Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. NH3-SCR Activity and Selectivity
2.2. NO, and NH3 Oxidation Activity
2.3. Characterization
2.4. Influence of H2O and SO2 on SCR Activity
3. Materials and Methods
3.1. Materials and Reagents
3.2. Experimental Setup and Governing Equations
3.3. Characterization Used
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Husnain, N.; Wang, E.; Li, K.; Anwar, M.T.; Mehmood, A.; Gul, M.; Li, D.; Jinda, M. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev. Chem. Eng. 2019, 35, 239–264. [Google Scholar] [CrossRef]
- Damma, D.; Ettereddy, P.R.; Reddy, B.M.; Simirniotis, P.G. A review of low temperature NH3-SCR for removal of NOx. Catalyst 2019, 9, 349. [Google Scholar] [CrossRef]
- Phil, H.H.; Reddy, M.P.; Kumar, P.A.; Ju, L.K.; Hyo, J.S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Appl. Catal. B Environ. 2008, 78, 301–308. [Google Scholar] [CrossRef]
- Rivas, F.C.; Iznaga, I.R.; Berlier, G.; Ferro, D.T.; Rosabal, B.C.; Petranovskii, V. Fe speciation in iron modified natural zeolites as sustainable environmental catalysts. Catalysts 2019, 9, 866. [Google Scholar] [CrossRef]
- Dunn, J.P.; Koppula, P.R.; Stenger, H.G.; Wachs, I.E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl. Catal. B Environ. 1998, 19, 103–117. [Google Scholar] [CrossRef]
- Bauerle, G.L.; Wu, S.C.; Nobe, K. Catalytic reduction of nitric oxide with ammonia on vanadium oxide and iron-chromium oxide. Ind. Eng. Chem. Pro. Res. Dev. 1975, 14, 268–273. [Google Scholar] [CrossRef]
- Balle, P.; Geiger, B.; Kureti, S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in the oxygen-rich exhaust. Appl. Catal. B Environ. 2009, 85, 109–119. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.W.; Gao, C.; Niu, C. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Appl. Catal. A Gen. 2016, 522, 54–69. [Google Scholar] [CrossRef]
- Ma, L.; Li, J.; Ke, R.; Fu, L. Catalytic performance, characterization, and mechanism study of (Fe2SO4)3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia. J. Phys. Chem C. 2011, 115, 7603–7612. [Google Scholar] [CrossRef]
- Zhihang, C.; Wang, F.; Li, H.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Ind. Eng. Chem. Res. 2011, 51, 202–212. [Google Scholar]
- Putluru, S.S.R.; Schill, L.; Jensen, A.D.; Siret, B.; Tabaries, F.; Fehrmann, R. Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 2015, 165, 628–635. [Google Scholar] [CrossRef]
- Wu, S.; Yao, X.; Zhang, L.; Cao, Y.; Zou, W.; Li, L.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Improved low-temperature NH3-SCR performance of FeMnTiOx mixed oxide with CTAB-assisted synthesis. Chem. Commun. 2015, 51, 3470–3473. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, L.; Wang, X.; Zou, W.; Cao, Y.; Sun, J.; Tang, C.; Gao, F.; Deng, Y.; Dong, L. Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Appl. Catal. A Gen. 2015, 505, 235–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Preparation of Mn-FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3. Catal. Commun. 2015, 62, 57–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Zou, H.; Zhang, X. One-step synthesis of ternary MnO2-Fe2O3-CeO2-Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3. Catal. Commun. 2015, 71, 46–50. [Google Scholar] [CrossRef]
- Salama, W.; El, A.M.; Gaupp, R. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1816–1826. [Google Scholar] [CrossRef]
- Park, T.S.; Jeong, S.K.; Hong, S.H.; Hong, S.C. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low-temperature. Ind. Eng. Chem. Res. 2001, 40, 4491–4495. [Google Scholar] [CrossRef]
- Zhu, B.; Yin, S.; Sun, Y.; Zhu, Z.; Li, J. Natural manganese ore catalyst for low-temperature selective catalytic reduction of NO with NH3 in the coke-oven flue gas. Environ. Sci. Pollut. Res. 2017, 24, 24584–24592. [Google Scholar] [CrossRef]
- Gui, K.; Liang, H.; Wang, F.; Yao, G. Low-temperature selective catalytic reduction of NO on an iron ore catalyst in a magnetically fluidized bed. Chem. Eng. Tech. 2015, 38, 1537–1542. [Google Scholar] [CrossRef]
- Cao, F.; Su, S.; Wang, P.; Hu, S.; Sun, L.; Zhang, A. The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low-temperature selective catalytic reduction of NO with NH3. Fuel 2015, 139, 232–239. [Google Scholar] [CrossRef]
- Liu, F.; He, H.; Zhang, C. Selective catalytic reduction of NOx with NH3 over iron titanate catalyst: Catalytic performance and characterization. Appl. Catal. B Environ. 2010, 96, 408–420. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Ma, L.; Peng, Y.; Hamidreza, A.; Chang, H.; Li, J. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia. Catal. Lett. 2013, 143, 697–704. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Q.; Li, X.; Peng, Y.; Li, B.; Si, W.; Lu, C.; Gan, L. Preparation of γ-Fe2O3 catalysts and their de-NOx performance: Effects of precipitation conditions. Chem. Eng. Technol. 2018, 41, 1019–1026. [Google Scholar] [CrossRef]
- Cao, D.; Li, H.; Pan, L.; Li, J.; Wang, X.; Jing, P.; Cheng, X.; Wang, W.; Wang, J.; Liu, Q. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Gui, K. Fe2O3 particles as superior catalysts for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 2013, 25, 2469–2475. [Google Scholar] [CrossRef]
- Gao, F.; Kollar, M.; Kukkadapu, R.K.; Washton, N.M.; Wang, Y.; Szanyi, J.; Peden, C.H.F. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl. Catal. B Environ. 2015, 164, 407–419. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, Y.; Kukkadapu, R.K.; Wang, Y.; Walter, E.D.; Schwenzer, B.; Szanyi, J.; Peden, C.H.F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: Nature of the Fe ions and structure-function relationships. ACS Catal. 2016, 6, 2939–2954. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Walter, E.D.; Washton, N.M.; Guo, Y.; Lu, G.; Peden, C.H.F.; Gao, F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catal. Today 2019, 320, 91–99. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; Aref, M.E.; Elmanawi, A.H. XPS and FTIR spectroscopic study on microwave treated highphosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; Mclntyre, N.S. Investegation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Q.; Hu, L.; Wang, D.; Peng, Y.; Shao, Z.; Lu, C.; Li, J. Insights over titanium modified FeMgOx catalysts for selective catalytic reduction of NOx with NH3: Influence of precursors and crystalline structures. Catalysts 2019, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low temperature. Catal. Commun. 2008, 9, 2217–2220. [Google Scholar] [CrossRef]
- Pineau, A.; Kanari, N.; Gaballah, I. Kinetics of reduction of iron oxides by H2. Thermochim. Acta 2006, 447, 89–100. [Google Scholar] [CrossRef]
- Jozwiak, W.K.; Kaczmarek, E.; Maniecki, T.P.; Ignaczak, W.; Maniukiewicz, W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A Gen. 2007, 326, 17–27. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Y.; Yan, N.; Wu, D.; He, H.; Qu, Z.; Yang, C.; Zhou, Q.; Jia, J. Nanosized cation-deficient Fe-Ti spinel: A novel magnetic sorbent for elemental mercury capture from flue gas. Appl. Mater. Interface 2011, 3, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Zhang, H.; Li, H.; Zhu, Q. Study on the kinetics of iron oxide reduction by hydrogen. Chin. J. Chem. Eng. 2012, 20, 10–17. [Google Scholar] [CrossRef]
- Ning, R.; Chen, L.; Li, E.; Liu, X.; Zhu, T. Applicability of V2O5-WO3/TiO2 catalysts for the SCR denitrification of alumina calcining flue gas. Catalysts 2019, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.S.; Yang, R.T.; Chen, N. Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia. J. Catal. 1996, 164, 70–78. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3–TiO2 prepared with a sol-gel method. J. Catal. 2002, 207, 158–165. [Google Scholar] [CrossRef]
- Li, Q.; Yang, H.; Ma, Z.; Zhang, X. Selective catalytic reduction of NO with NH3 over CuOX-carbonaceous materials. Catal. Commun. 2012, 17, 8–12. [Google Scholar] [CrossRef]
- Chen, W.; Hu, F.; Qin, L.; Han, J.; Zhao, B.; Tu, Y.; Yu, F. Mechanism and Performance of the SCR of NO with NH3 over Sulfated Sintered Ore Catalyst. Catalysts 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, C.; Chen, J.; Peng, Y.; Ma, L.; Chang, H. A novel magnetic Fe–Ti–V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catal. Sci. Technol. 2012, 2, 915–917. [Google Scholar] [CrossRef]
- Won, P.; Hee, K.; Chang, S. SO2 durability enhancement of ball-milled V/TiO2 catalyst. Ind. Eng. Chem. Res. 2010, 16, 283–287. [Google Scholar]
- Pietrogiacomi, D.; Magliano, A.; Ciambelli, P.; Sannino, D.; Campa, M.C.; Indovina, V. The effect of sulphation on the catalytic activity of CoOx/ZrO2 for NO reduction with NH3 in the presence of O2. Appl. Catal. B Environ. 2009, 89, 33–40. [Google Scholar] [CrossRef]
Samples | 50 °C | 150 °C | 250 °C | 350 °C |
---|---|---|---|---|
Sample A | 96.66% | 95.43% | 91.98% | 85.45% |
Sample B | 96.66% | 94.50% | 83.45% | 70.35% |
Sample C | 96.66% | 94.52% | 86.35% | 80.84% |
Sample D | 96.66% | 94.13% | 78.78% | 59.47% |
Elements | Sample A (%) | Sample B (%) | Sample C (%) | Sample D (%) |
---|---|---|---|---|
Fe | 60.961 | 68.099 | 67.853 | 64.32 |
O | 31.564 | 26.630 | 25.801 | 28.95 |
Al | 1.706 | 2.043 | 2.243 | 2.13 |
Si | 3.386 | 1.080 | 1.881 | 2.95 |
P | 0.029 | 0.066 | 0.082 | 0.087 |
Calcination Temperature (°C) | BET Surface Area (m2·g−1) | Average Crystallite Size (nm) |
---|---|---|
Not calcined | 21.63 | 43.24 |
250 | 42.52 | 19.62 |
350 | 36.76 | 33.98 |
450 | 28.14 | 38.24 |
Samples | BET Surface Area (m2·g−1) | Average Crystallite Size (nm) |
---|---|---|
Sample A | 42.52 | 19.63 |
Sample B | 26.81 | 39.64 |
Sample C | 38.87 | 29.74 |
Sample D | 22.84 | 42.04 |
Samples | Oβ | Oα | Oγ | AOα/A(Oα + Oβ + Oγ) (%) | |||
---|---|---|---|---|---|---|---|
BE (eV) | Area | BE (eV) | Area | BE (eV) | Area | ||
Sample A | 529.9 | 7841 | 531.4 | 10784 | 532.6 | 5483.9 | 44 |
Sample D | 529.8 | 7016 | 531.4 | 6117 | 532.6 | 2469.5 | 39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husnain, N.; Wang, E.; Fareed, S. Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts 2019, 9, 956. https://doi.org/10.3390/catal9110956
Husnain N, Wang E, Fareed S. Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts. 2019; 9(11):956. https://doi.org/10.3390/catal9110956
Chicago/Turabian StyleHusnain, Naveed, Enlu Wang, and Shagufta Fareed. 2019. "Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst" Catalysts 9, no. 11: 956. https://doi.org/10.3390/catal9110956
APA StyleHusnain, N., Wang, E., & Fareed, S. (2019). Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts, 9(11), 956. https://doi.org/10.3390/catal9110956