Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Optimization of Biodiesel Production through CCD
2.3. Parameters Study and Interaction Between Independent Variable
2.4. Validation of the Model
2.5. Performance Comparison of Free CALB, N435 and CALB@SNFs-PE
3. Materials and Methods
3.1. Material
3.2. Synthesis of the Silica Nanoflowers
3.3. Construction of the Biocatalytic Pickering Emulsion
3.4. Characterization
3.5. Production of Biodiesel
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karmakar, B.; Halder, G. Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies. Energy Convers. Manag. 2019, 182, 307–339. [Google Scholar] [CrossRef]
- Abed, K.A.; Gad, M.S.; El Morsi, A.K.; Sayed, M.M.; Elyazeed, S.A. Effect of biodiesel fuels on diesel engine emissions. Egypt. J. Pet. 2019, 28, 183–188. [Google Scholar] [CrossRef]
- Christopher, L.P.; Hemanathan, K.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M. Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renew. Energy 2017, 105, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.; Brask, J.; Fjerbaek Søtof, L. Enzymatic biodiesel production: Technical and economical considerations. Eur. J. Lipid Sci. Technol. 2008, 110, 692–700. [Google Scholar] [CrossRef]
- You, Q.; Yin, X.; Zhao, Y.; Zhang, Y. Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresour. Technol. 2013, 148, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Chang, C. Kinetics of lipase-catalyzed hydrolysis of lipids in biphasic organic—Aqueous systems. J. Appl. Chem. Biotechnol. 1993, 57, 147–154. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 1988, 263, 3194–3201. [Google Scholar]
- Wang, Z.; Oers, M.C.M.; Floris, R.P.J.T.; Hest, V.J.C.M. Polymersome Colloidosomes for Enzyme Catalysis in a Biphasic System. Angew. Chem. Int. Ed. 2012, 51, 10746–10750. [Google Scholar] [CrossRef]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catal. 2013, 3, 2823–2836. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, M.; Zhang, X.; Xin, H.; Yang, H. Pickering Emulsion as an Efficient Platform for Enzymatic Reactions without Stirring. ACS Sustain. Chem. Eng. 2016, 4, 6838–6843. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.H.; Doan, T.T.; Su, C.H.; Yang, P.C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manag. 2017, 145, 335–342. [Google Scholar] [CrossRef]
- Bandikari, R.; Qian, J.; Baskaran, R.; Liu, Z.; Wu, G. Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol. Bioresour. Technol. 2018, 249, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Shahedi, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M.; As’habi, M.A. Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renew. Energy 2019, 141, 847–857. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ashjari, M.; Dezvarei, S.; Yousefi, M.; Babaki, M.; Mohammadi, J. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: Application in biodiesel production. RSC Adv. 2015, 5, 32698–32705. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, L.; Yang, H. Micrometer-Scale Mixing with Pickering Emulsions: Biphasic Reactions without Stirring. ChemSusChem 2014, 7, 391–396. [Google Scholar] [CrossRef]
- Yang, B.; Leclercq, L.; Clacensb, J.M.; Rataj, V.N. Acidic/amphiphilic silica nanoparticles: New eco-friendly Pickering interfacial catalysis for biodiesel production. Green Chem. 2017, 19, 4552–4562. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, H.; Zhao, C.; Ju, E.; Ren, J.; Qu, X. Individual surface-engineered microorganisms as robust Pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. Angew. Chem. Int. Ed. Engl. 2015, 54, 4904–4908. [Google Scholar] [CrossRef]
- Liu, J.; Lan, G.J.; Peng, J.; Li, Y.; Li, C.; Yang, Q.H. Enzyme Confined in Silica-based Nanocages for Biocatalysis in Pickering Emulsion. Chem. Commun. 2013, 49, 9558–9560. [Google Scholar] [CrossRef]
- Scott, G.; Roy, S.; Abul-Haija, Y.M.; Fleming, S.; Bai, S.; Ulijn, R.V. Pickering stabilized peptide gel particles as tunable microenvironments for biocatalysis. Langmuir 2013, 29, 14321–14327. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Chen, Y.; Zhou, L.; He, Y.; Ma, L.; Gao, J. Pickering emulsion stabilized by lipase-containing periodic mesoporous organosilica particles: A robust biocatalyst system for biodiesel production. Bioresour. Technol. 2014, 153, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Jiang, Y.; Zhou, L.; Ma, L.; He, Y.; Gao, J. Biocatalytic Pickering Emulsions Stabilized by Lipase-Immobilized Carbon Nanotubes for Biodiesel Production. Catalysts 2018, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wang, X.; Zhang, S.; Tang, L.; Jiang, Z. Enzyme-conjugated ZIF-8 particles as efficient and stable Pickering interfacial biocatalysts for biphasic biocatalysis. J. Mater. Chem. B 2016, 4, 2654–2661. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, C.; Ju, E.; Ji, H.; Ren, J.; Binks, B.P.; Qu, X. Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis. Adv. Mater. 2016, 28, 1682–1688. [Google Scholar] [CrossRef]
- Moon, D.S.; Lee, J.K. Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems. Langmuir 2014, 30, 15574–15580. [Google Scholar] [CrossRef]
- Yang, W.; Li, B. A novel liquid template corrosion approach for layered silica with various morphologies and different nanolayer thicknesses. Nanoscale 2014, 6, 2292–2298. [Google Scholar] [CrossRef]
- Du, X.; Qiao, S.Z. Dendritic silica particles with center-radial pore channels: Promising platforms for catalysis and biomedical applications. Small 2015, 11, 392–413. [Google Scholar] [CrossRef]
- Zhou, W.J.; Fang, L.; Fan, Z.; Albela, B.; Bonneviot, L.; De Campo, F.; Pera Titus, M.; Clacens, J.M. Tunable catalysts for solvent-free biphasic systems: Pickering interfacial catalysts over amphiphilic silica nanoparticles. J. Am. Chem. Soc. 2014, 136, 4869–4872. [Google Scholar] [CrossRef]
- Fihri, A.; Bouhrara, M.; Patil, U.; Cha, D.; Saih, Y.; Polshettiwar, V. Fibrous Nano-Silica Supported Ruthenium (KCC-1/Ru): A Sustainable Catalyst for the Hydrogenolysis of Alkanes with Good Catalytic Activity and Lifetime. ACS Catal. 2012, 2, 1425–1431. [Google Scholar] [CrossRef]
- Park, D.S.; Yun, D.; Choi, Y.; Kim, T.Y.; Oh, S.; Cho, J.-H.; Yi, J. Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst. Chem. Eng. J. 2013, 228, 889–895. [Google Scholar] [CrossRef]
- Du, X.; He, J. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers. Nanoscale 2012, 4, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Bouhrara, M.; Ranga, C.; Fihri, A.; Shaikh, R.R.; Sarawade, P.; Emwas, A.H.; Hedhili, M.N.; Polshettiwar, V. Nitridated Fibrous Silica (KCC-1) as a Sustainable Solid Base Nanocatalyst. ACS Sustain. Chem. Eng. 2013, 1, 1192–1199. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; He, Y.; Abdulrazaq, M.A.; Yan, Y. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J. Biotechnol. 2018, 281, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, Y.; Wang, C.; Wang, Z.; Chen, X.; Li, M.; Zhao, R.; Wang, L. Application of dual-enzyme nanoflower in the epoxidation of alkenes. Process Biochem. 2018, 74, 103–107. [Google Scholar] [CrossRef]
- Shu, Q.; Gao, J.; Nawaz, Z.; Liao, Y.; Wang, D.; Wang, J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl. Energy 2010, 87, 2589–2596. [Google Scholar] [CrossRef]
- Halim, S.; Harunkamaruddin, A. Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem. 2008, 43, 1436–1439. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, G.; Su, F.; Li, K.; Xu, L.; Han, X.; Yan, Y. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel 2016, 178, 172–178. [Google Scholar] [CrossRef]
- Dizge, N.; Aydiner, C.; Imer, D.Y.; Bayramoglu, M.; Tanriseven, A.; Keskinler, B. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour. Technol. 2009, 100, 1983–1991. [Google Scholar] [CrossRef]
- Hakalin, N.L.S.; Molina-Gutierrez, M.; Prieto, A.; Martinez, M.J. Optimization of lipase-catalyzed synthesis of beta-sitostanol esters by response surface methodology. Food Chem. 2018, 261, 139–148. [Google Scholar] [CrossRef]
- Zhou, Z.; Inayat, A.; Schwieger, W.; Hartmann, M. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous Mesoporous Mater. 2012, 154, 133–141. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, X.; Jiang, Y.; Zhou, L.; He, Y.; Gao, J. Immobilized lipase from Candida sp. 99–125 on hydrophobic silicate: Characterization and applications. Appl. Biochem. Biotechnol. 2014, 173, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.V.; Yunus, R.; Juan, J.C.; Taufiq-Yap, Y.H. Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process. Technol. 2011, 92, 2420–2428. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Nagar, S.; Bhushan, I.; Kumar, L.; Parshad, R.; Gupta, V.K. Covalent immobilization of organic solvent tolerant lipase on aluminum oxide pellets and its potential application in esterification reaction. J. Mol. Catal. B Enzym. 2013, 87, 51–61. [Google Scholar] [CrossRef]
- Ngai, T.; Jiang, H.; Li, Y.; Hong, L. Submicron Inverse Pickering Emulsions for Highly Efficient and Recyclable Enzymatic Catalysis. Chem. Asian J. 2018, 13, 3533–3539. [Google Scholar]
- Gao, J.; Kong, W.; Zhou, L.; He, Y.; Ma, L.; Wang, Y.; Yin, L.; Jiang, Y. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 2017, 309, 70–79. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, Y.L.; Bai, R.X.; Ma, H.L.; Wang, W.H.; Sun, H.J.; Dong, Y.M.; Qu, F.M.; Tang, Q.M.; Guo, T.; et al. Pickering Emulsion-Enhanced Interfacial Biocatalysis: Tailored Alginate Microparticles Act as Particulate Emulsifier and Enzyme Carrier. Green Chem. 2013, 21, 2229–2233. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, C.; Zhao, Y.; Moller, M.; Yan, K.; Zhu, X. Encapsulation of laccase in silica colloidosomes for catalysis in organic media. Langmuir 2013, 29, 15457–15462. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Gu, H.Q.; Zhou, L.Y.; Cui, C.C.; Gao, J. Novel in Situ Batch Reactor with a Facile Catalyst Separation Device for Biodiesel Production. Ind. Eng. Chem. Res. 2012, 51, 14935–14940. [Google Scholar] [CrossRef]
Systems | Independent Variables | Unit | Low Level (−) | High Level (+) | −Alpha | +Alpha |
---|---|---|---|---|---|---|
A | Molar ratio of methanol to oil | 2 | 4 | 1 | 5 | |
B | Temperature | °C | 37.5 | 52.5 | 30 | 60 |
C | CALB@SNFs dosage | mg | 20 | 40 | 10 | 50 |
D | Time | h | 6 | 10 | 4 | 12 |
NO. | Type | A (Molar Ratio of Methanol to Oil) | B (Temperature, °C) | C (CALB@SNFs Dosage, mg) | D (Time, h) | Yield % |
---|---|---|---|---|---|---|
1 | Factorial | 2.00 | 37.50 | 20.00 | 6.00 | 70.55 |
2 | Factorial | 4.00 | 37.50 | 20.00 | 6.00 | 58.62 |
3 | Factorial | 2.00 | 52.50 | 20.00 | 6.00 | 80.20 |
4 | Factorial | 4.00 | 52.50 | 20.00 | 6.00 | 48.59 |
5 | Factorial | 2.00 | 37.50 | 40.00 | 6.00 | 82.31 |
6 | Factorial | 4.00 | 37.50 | 40.00 | 6.00 | 81.66 |
7 | Factorial | 2.00 | 52.50 | 40.00 | 6.00 | 89.38 |
8 | Factorial | 4.00 | 52.50 | 40.00 | 6.00 | 68.93 |
9 | Factorial | 2.00 | 37.50 | 20.00 | 10.00 | 89.63 |
10 | Factorial | 4.00 | 37.50 | 20.00 | 10.00 | 76.10 |
11 | Factorial | 2.00 | 52.50 | 20.00 | 10.00 | 86.00 |
12 | Factorial | 4.00 | 52.50 | 20.00 | 10.00 | 52.30 |
13 | Factorial | 2.00 | 37.50 | 40.00 | 10.00 | 94.25 |
14 | Factorial | 4.00 | 37.50 | 40.00 | 10.00 | 94.09 |
15 | Factorial | 2.00 | 52.50 | 40.00 | 10.00 | 88.50 |
16 | Factorial | 4.00 | 52.50 | 40.00 | 10.00 | 67.09 |
17 | Axial | 1.00 | 45.00 | 30.00 | 8.00 | 74.26 |
18 | Axial | 5.00 | 45.00 | 30.00 | 8.00 | 41.70 |
19 | Axial | 3.00 | 30.00 | 30.00 | 8.00 | 80.66 |
20 | Axial | 3.00 | 60.00 | 30.00 | 8.00 | 62.60 |
21 | Axial | 3.00 | 45.00 | 10.00 | 8.00 | 68.59 |
22 | Axial | 3.00 | 45.00 | 50.00 | 8.00 | 95.90 |
23 | Axial | 3.00 | 45.00 | 30.00 | 4.00 | 84.95 |
24 | Axial | 3.00 | 45.00 | 30.00 | 12.00 | 99.00 |
25 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 97.70 |
26 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 96.70 |
27 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 97.10 |
28 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 97.80 |
29 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 95.97 |
30 | Center | 3.00 | 45.00 | 30.00 | 8.00 | 97.50 |
Source | Sum of Squares | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|
Mean | 195,000 | 1950 | |||
Liner | 3512.87 | 878.22 | 5.34 | 0.0030 | |
2FI | 782.17 | 130.36 | 0.74 | 0.6216 | |
Quadratic | 3319.69 | 829.92 | 1113.56 | <0.0001 | Suggested |
Cubic | 5.23 | 0.65 | 0.77 | 0.6427 | Aleased |
Residual | 5.95 | 0.85 | |||
Total | 202,600 | 6753.95 |
Terms | Sum of Squares | F-Value | p-Value (Prob > F) | Analysis |
---|---|---|---|---|
Model | 7614.72 | 729.79 | <0.0001 | significant |
A: Molar ratio of methanol to oil | 1642.88 | 2204.35 | <0.0001 | |
B: Temperature | 436.35 | 585.48 | <0.0001 | |
C: CALB@SNFs dosage | 1051.11 | 1410.33 | <0.0001 | |
D: Time | 382.53 | 513.26 | <0.0001 | |
AB | 409.04 | 548.83 | <0.0001 | |
AC | 144.52 | 193.91 | <0.0001 | |
AD | 1.08 | 1.45 | 0.2470 | |
BC | 7.04 | 9.44 | 0.0077 | |
BD | 183.23 | 245.85 | <0.0001 | |
CD | 37.26 | 49.99 | <0.0001 | |
A2 | 2555.77 | 3429.23 | <0.0001 | |
B2 | 1.68.11 | 1433.14 | <0.0001 | |
C2 | 352.85 | 473.44 | <0.0001 | |
D2 | 36.54 | 49.33 | <0.0001 | |
Residual | 11.18 | 0.75 | ||
Lack of Fit | 8.74 | 1.79 | 0.2704 | not significant |
Pure Error | 2.44 | 0.49 | ||
Standard of deviation | 0.86 | R2 | 0.9985 | |
Mean | 80.62 | Adjusted R2 | 0.9972 | |
Coefficient of variation % | 1.07 | Predicted R2 | 0.9929 | |
PRESS | 53.84 | Adequate Precision | 95.876 |
Solution | Molar Ratio of Methanol to Oil | Temperature, °C | CALB@SNFs Dosage, mg | Time, h | Theoretical Yield % | Experimental Yield % |
---|---|---|---|---|---|---|
1 | 2.63 | 45.97 | 33.24 | 8.11 | 100.00 | 98.5 ± 0.6 |
2 | 2.97 | 44.15 | 30.24 | 9.15 | 99.99 | 98.3 ± 0.4 |
3 | 2.34 | 38.02 | 39.23 | 9.89 | 99.99 | 98.2 ± 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, X.; Jiang, Y.; Liu, P.; Zhou, L.; Ma, L.; He, Y.; Li, H.; Gao, J. Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel. Catalysts 2019, 9, 1026. https://doi.org/10.3390/catal9121026
Wang L, Liu X, Jiang Y, Liu P, Zhou L, Ma L, He Y, Li H, Gao J. Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel. Catalysts. 2019; 9(12):1026. https://doi.org/10.3390/catal9121026
Chicago/Turabian StyleWang, Lihui, Xinlong Liu, Yanjun Jiang, Peng Liu, Liya Zhou, Li Ma, Ying He, Heyu Li, and Jing Gao. 2019. "Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel" Catalysts 9, no. 12: 1026. https://doi.org/10.3390/catal9121026
APA StyleWang, L., Liu, X., Jiang, Y., Liu, P., Zhou, L., Ma, L., He, Y., Li, H., & Gao, J. (2019). Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel. Catalysts, 9(12), 1026. https://doi.org/10.3390/catal9121026