Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Correlation between the NH3 Absorption and the FFA Conversion Rate
2.2. Catalyst Characterization
2.2.1. TPD-NH3 Analysis
2.2.2. FT-IR Analysis
2.2.3. BET Surface Area Analysis
2.2.4. X-ray Diffraction Analysis
2.2.5. SEM Analysis
2.3. Optimization of Esterification Conditions
2.3.1. Effect of the Methanol:PFAD Molar Ratio
2.3.2. Effect of the Catalyst Concentration
2.3.3. Effect of the Operating Temperature
2.3.4. Effect of the Reaction Time
2.4. Proposed Mechanism for Esterification Reaction
2.5. FAME Yield Evaluation
2.6. Catalyst Stability and Recyclability
2.7. Comparison of Zr-Based Catalysts in the Ester Production
2.8. Determination of Physicochemical Characteristics of Synthesized PFAD Methyl Ester
2.8.1. Specific Gravity
2.8.2. Kinematic Viscosity
2.8.3. Cold Flow Characteristics
2.8.4. Flash Point
2.8.5. Acid Value
2.8.6. Water Content
3. Materials and Methods
3.1. Materials
3.2. FAME Analysis
3.3. Catalyst Preparation
3.4. Catalytic Activity
3.5. Catalyst Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malins, K. The potential of K3PO4, K2CO3, Na3PO4 and Na2CO3 as reusable alkaline catalysts for practical application in biodiesel production. Fuel. Proc. Technol. 2018, 179, 302–312. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Al-Resayes, S.I.; Nehdi, I.A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Convers. Manag. 2017, 141, 183–205. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Rashid, U.; Rehman, H.A.; Hussain, I.; Ibrahim, M.; Haider, M.S. Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production. Energy 2011, 36, 5632–5639. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, L.; Xing, S.; Luo, W.; Wang, Z.; Lv, P. Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. J. Clean. Prod. 2018, 199, 772–780. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Xu, Y.; Liu, Q.; Qian, G. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel. Bioresour. Technol. 2015, 190, 438–441. [Google Scholar] [CrossRef]
- Kazemian, H.; Turowec, B.; Siddiquee, M.N.; Rohani, S. Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst. Fuel 2013, 103, 719–724. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Ghasemi, M. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process. Technol. 2012, 97, 45–51. [Google Scholar] [CrossRef]
- Ouedraogo, I.W.K.; Mouras, S.; Changotade, O.A.; Blin, J. Development of new solid acid catalyst for biodiesle production using local vegetable resources, adapted to the contexts of the West African countries. Waste Biomass Valor. 2018, 9, 1893–1901. [Google Scholar] [CrossRef]
- Martinez, A.; Mijangos, G.E.; Romeoro-Ibarra, I.C.; Hernandez-Altamirano, R.; Mena-Cervantes, V.Y.; Gutierrez, S. A novel green one-pot synthesis of biodiesel from Ricinus communis seeds by basic heterogeneous catalysis. J. Clean. Prod. 2018, 196, 340–349. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy 2014, 78, 72–83. [Google Scholar] [CrossRef]
- Malins, K.; Kampars, V.; Brinks, J.; Neibolte, I.; Murnieks, R. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation. Appl. Catal. B Environ. 2015, 176–177, 553–558. [Google Scholar] [CrossRef]
- Yujaroen, D.; Goto, M.; Sasaki, M.; Shotipruk, A. Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity. Fuel 2009, 88, 2011–2016. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, S.H.; Hong, S.W.; Yeo, Y.-K. A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel 2012, 93, 373–380. [Google Scholar] [CrossRef]
- Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. Am. Chem. Soc. Catal. 2012, 2, 1296–1304. [Google Scholar] [CrossRef]
- Wang, A.; Li, H.; Pan, H.; Zhang, H.; Xu, F.; Yu, Z.; Yang, S. Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Process. Technol. 2018, 181, 259–267. [Google Scholar] [CrossRef]
- Konwar, L.J.; Boro, J.; Deka, D. Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev. 2014, 29, 546–554. [Google Scholar] [CrossRef]
- Kastner, J.R.; Miller, J.; Geller, D.P.; Locklin, J.; Keith, L.H.; Johnson, T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 2012, 190, 122–132. [Google Scholar] [CrossRef]
- Lou, W.-Y.; Zong, M.-H.; Duan, Z.-Q. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 2008, 99, 8752–8858. [Google Scholar] [CrossRef]
- Chin, L.H.; Abdullah, A.Z.; Hameed, B.H. Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chem. Eng. J. 2012, 183, 104–107. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H. Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chin. J. Chem. Eng. 2015, 23, 1857–1864. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Al-Resayes, S.I.; Nehdi, I.A. Sulfonated mesoporous ZnO catalyst for methyl esters production. J. Clean. Prod. 2017, 144, 482–491. [Google Scholar] [CrossRef]
- Dawodu, F.A.; Ayodele, O.; Xin, J.; Zhang, S.; Yan, D. Effective conversion of non-edible oil with free fatty acid into biodiesel by sulphonated carbon catalyst. Appl. Energy 2014, 114, 819–826. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Nehdi, I.A.; Al-Resayes, S.I.; Al-Muhtaseb, A.H. Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system. J. Taiwan Instit. Chem. Eng. 2017, 70, 219–228. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Huang, M.; Ma, H.-L.; Zhang, Z.-Q.; Gao, J.-M.; Zhu, Y.-L.; Han, X.-J.; Guo, X.-Y. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 2010, 15, 7188–7196. [Google Scholar] [CrossRef] [Green Version]
- Duan, G.; Zhang, C.; Li, A.; Yang, X.; Lu, L.; Wang, X. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res. Lett. 2008, 3, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Amani, H.; Ahmad, Z.; Hameed, B.H. Highly active alumina-supported Cs–Zr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. Appl. Catal. A Gen. 2014, 487, 16–25. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H.; Al-Resayes, S.I. Post-functionalization of polymeric mesoporous C@Zn core-shell spheres used for methyl ester production. Renew. Energy 2016, 99, 1235–1243. [Google Scholar] [CrossRef]
- Amani, H.; Ahmad, Z.; Asif, M.; Hameed, B.H. Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst. J. Ind. Eng. Chem. 2014, 20, 4437–4442. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 2015, 95, 242–247. [Google Scholar] [CrossRef]
- Xie, W.; Hu, L.; Yang, X. Basic ionic liquid supported on mesoporous SBA-15 silica as an efficient heterogeneous catalyst for biodiesel production. Ind. Eng. Chem. Res. 2015, 54, 1505–1512. [Google Scholar] [CrossRef]
- Vahid, B.R.; Saghatoleslami, N.; Nayebzadeh, H.; Toghiani, J. Effect of alumina loading on the properties and activity of SO42−/ZrO2 for biodiesel production: Process optimization via response surface methodology. J. Taiwan Inst. Chem. Eng. 2018, 83, 115–123. [Google Scholar] [CrossRef]
- Singh, V.; Belova, L.; Singh, B.; Sharma, Y.C. Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM). Energy Conver. Manag. 2018, 174, 198–207. [Google Scholar] [CrossRef]
- Fatimah, I.; Rubiyanto, D.; Taushiyah, A.; Najah, F.B.; Azmi, U.; Sim, Y.-L. Use of ZrO2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion. Sustain. Chem. Pharm. 2019, 12, 100129. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Mahmoud, H.R.; El-Molla, S.A. Influence of support on physicochemical properties of ZrO2 based solid acid heterogeneous catalysts for biodiesel production. Catal. Commun. 2019, 122, 10–15. [Google Scholar] [CrossRef]
- Dinkov, R.; Hristov, G.; Stratiev, D.; Aldayri, V.B. Effect of commercially available antioxidants over biodiesel/diesel blends stability. Fuel 2009, 88, 732–737. [Google Scholar] [CrossRef]
- Ganduglia-Pirovano, M.V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl, A.; Baron, M. Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. J. Am. Chem. Soc. 2010, 132, 2345–2349. [Google Scholar] [CrossRef]
- Du, J.; Xu, H.; Shen, J.; Huang, J.; Shen, W.; Zhao, D. Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M=Al, Zn) catalysts. Appl. Catal. A Gen. 2005, 296, 186–193. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chiu, C.-C. Burning characteristics of palm-oil biodiesel under long-term storage conditions. Energy Convers. Manag. 2010, 51, 1464–1467. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Cheng, H.-H. Application of mesoporous catalysts over palm-oil biodiesel for adjusting fuel properties. Energy Convers. Manag. 2012, 53, 128–134. [Google Scholar] [CrossRef]
- Knothe, G. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar] [CrossRef]
- Rao, B.V.S.K.; Mouli, K.C.; Rambabu, N.; Dalai, A.K.; Prasad, R.B.N. Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. Catal. Commun. 2011, 14, 20–26. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, J.-K.; Hong, S.W.; Yeo, Y.-K. Development of a novel process for biodiesel production from palm fatty acid distillate (PFAD). Fuel Process. Technol. 2012, 104, 271–280. [Google Scholar] [CrossRef]
Sample | SBET (m2g−1) a | Dp (nm) b | Vp (cm3g−1) c | NH3 Acidity Density (mmol g−1) d |
---|---|---|---|---|
20 wt%Zr-AC-HSO3 | 326.71 | 3.55 | 0.32 | 19.55 |
Catalyst | MeOH:Feedstock Molar Ratio | Catalyst Concentration | Reaction Time | Reaction Temperature | Ester Yield | Reference |
---|---|---|---|---|---|---|
SO42−/ZrO2 | 12.7:1 | 2.9 | 93 | 148.5 | 93.5 | [32] |
Mg2Zr5O12 | 18:1 | 2.5 | 150 | 135 | 97.0 | [33] |
ZrO2/BLA | 15:1 | 15 | 60 | - | 95.9 | [34] |
ZrO2/SiO2 | 120:1 | 0.1 | 180 | 120 | 48.6 | [35] |
Zr-AC-HSO3 | 15:1 | 20 | 180 | 75 | 96.1 | This work |
Characteristics | FAME Product | Method | ASTM D6751 | EN 14214 |
---|---|---|---|---|
Specific gravity (g cm−3) | 0.83 ± 0.10 | ASTM D1298 | 0.82–0.90 | 0.86–0.90 |
Kinematic viscosity (mm2 s−1) | 4.19 ± 0.07 | ASTM D445 | 1.9–6.0 | 3.5–5.0 |
Cloud point (°C) | 9 ± 0.50 | ASTM D2500 | −3–12 | ⁂ NS |
Pour point (°C) | 6 ± 0.30 | ASTM D97 | −15–12 | ⁂ NS |
Flash point (°C) | 170 ± 3.30 | ASTM D93 | 130 min | 120 min |
Acid value (mg KOH g−1) | 0.39 ± 0.07 | ASTM D664 | 0.5 max | 0.5 max |
Water content (mg kg−1) | 0.01 ± 0.01 | ASTM D6304 | 0.03 max | 0.05 max |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, U.; Soltani, S.; Yaw Choong, T.S.; Nehdi, I.A.; Ahmad, J.; Ngamcharussrivichai, C. Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate. Catalysts 2019, 9, 1029. https://doi.org/10.3390/catal9121029
Rashid U, Soltani S, Yaw Choong TS, Nehdi IA, Ahmad J, Ngamcharussrivichai C. Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate. Catalysts. 2019; 9(12):1029. https://doi.org/10.3390/catal9121029
Chicago/Turabian StyleRashid, Umer, Soroush Soltani, Thomas Shean Yaw Choong, Imededdine Arbi Nehdi, Junaid Ahmad, and Chawalit Ngamcharussrivichai. 2019. "Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate" Catalysts 9, no. 12: 1029. https://doi.org/10.3390/catal9121029
APA StyleRashid, U., Soltani, S., Yaw Choong, T. S., Nehdi, I. A., Ahmad, J., & Ngamcharussrivichai, C. (2019). Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate. Catalysts, 9(12), 1029. https://doi.org/10.3390/catal9121029