Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrolysis of Pomace Oil and FAME
2.2. Catalyst Stability
2.3. Emulsion Stability
2.4. Kinetic Modelling
2.5. Validation of the Mathematical Model
2.6. Simulation
3. Materials and Methods
3.1. Catalyst Syntheshis
3.2. Catalytic Tests
3.3. Kinetic modelling
- Perfect mixing of reagents and products.
- The reaction system can be considered pseudo-homogeneous and isothermal.
- The catalyst is dissolved and perfectly mixed in the reactor. There is no mass transfer limitation.
- The methanol concentration is constant during the reaction.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Lestari, S.; Mäki-Arvela, P.; Beltramini, J.; Lu, G.Q.M.; Murzin, D.Y. Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2009, 2, 1109–1119. [Google Scholar] [CrossRef]
- Renewables 2017, Global Status Report. Available online: http://www.ren21.net/gsr-2017/ (accessed on 5 June 2018).
- Rajaeifar, M.A.; Akram, A.; Ghobadian, B.; Rafiee, S.; Heijungs, R.; Tabatabaei, M. Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy 2016, 106, 87–102. [Google Scholar] [CrossRef]
- Ouachab, N.; Tsoutsos, T. Study of the acid pretreatment and biodiesel production from olive pomace oil. J. Chem. Technol. Biotechnol. 2013, 88, 1175–1181. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Alvarez-Mateos, P.; Rodríguez-Gutierrez, G.; Montaña Durán-Barrantes, M.M.; Fernandez-Bolaños, J. Biodiesel production from olive pomace oil of steam-treated alperujo. Biomass Bioenergy 2014, 67, 443–450. [Google Scholar] [CrossRef]
- Che, F.; Sarantopoulos, I.; Tsoutsos, T.; Gekas, V. Exploring a promising feedstock for biodiesel production in Mediterranean countries: A study on free fatty acid esterification of olive pomace oil. Biomass Bioenergy 2012, 36, 427–431. [Google Scholar] [CrossRef]
- Alvarez Serafini, M.S.; Tonetto, G.M. Production of fatty acid methyl esters from an olive oil industry waste. Braz. J. Chem. Eng. 2019, 36, 285–297. [Google Scholar] [CrossRef]
- Yüsel, Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour. Technol. 2011, 102, 3977–3980. [Google Scholar] [CrossRef]
- Bonet-Ragel, K.; Canet, A.; Benaiges, M.D.; Valero, F. Synthesis of biodiesel from high FFA alperujo oil catalyzed by immobilised lipase. Fuel 2015, 161, 12–17. [Google Scholar] [CrossRef]
- Hernández, D.; Astudillo, L.; Gutiérrez, M.; Tenreiro, C.; Retamal, C.; Rojas, C. Biodiesel production from an industrial residue: Alperujo. Ind. Crop. Prod. 2014, 52, 495–498. [Google Scholar] [CrossRef]
- Reinoso, D.M.; Damiani, D.E.; Tonetto, G.M. Zinc carboxylic salts used as catalyst in the biodiesel synthesis by esterification and transesterification: Study of the stability in the reaction medium. Appl. Catal. A Gen. 2012, 449, 88–95. [Google Scholar] [CrossRef]
- Barman, S.; Vasudevan, S. Melting of saturated fatty acid zinc soaps. J. Phys. Chem. B 2006, 110, 22407–22414. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.; Gopinath, R.; Meher, L.C.; Dalai, A. Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B Environ. 2008, 85, 86–91. [Google Scholar] [CrossRef]
- Alvarez Serafini, M.S.; Reinoso, D.M.; Tonetto, G.M. Response surface study and kinetic modelling of biodiesel synthesis catalyzed by zinc stearate. Energy 2018, 164, 264–274. [Google Scholar] [CrossRef]
- Gaurav, A.; Dumas, S.; Mai, C.T.Q.; Ng, F.T.T. A Kinetic model for a Single Step Biodiesel Production from a High Free Fatty Acid (FFA) Biodiesel Feedstock over a Solid Heteropolyacid Catalyst. Green Energy Environ. 2019, 4, 328–341. [Google Scholar] [CrossRef]
- Neumann, K.; Wertha, K.; Martín, A.; Górak, A. Biodiesel production from waste cooking oils through esterification: Catalyst screening, chemical equilibrium and reaction kinetics. Chem. Eng. Res. Des. 2016, 107, 52–62. [Google Scholar] [CrossRef]
- Marjanovic, A.V.; Stamenkovic, O.S.; Todorovic, Z.B.; Lazic, M.L.; Veljkovic, V.B. Kinetics of the base-catalyzed sunflower oil ethanolysis. Fuel 2010, 89, 665–671. [Google Scholar] [CrossRef]
- Konwar, L.J.; Wärnå, J.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.P. Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel 2016, 166, 1–11. [Google Scholar] [CrossRef]
- Shu, Q.; Gao, J.; Liao, Y.; Wang, J. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst. Chin. J. Chem. Eng. 2011, 19, 163–168. [Google Scholar] [CrossRef]
- Reinoso, D.M.; Damiani, D.E.; Tonetto, G.M. Zinc glycerolate as a novel heterogeneous catalyst for the synthesis of fatty acid methyl esters. Appl. Catal. B 2014, 144, 308–316. [Google Scholar] [CrossRef]
- Pugnet, V.; Maury, S.; Coupard, V.; Dandeu, A.; Quoineaud, A.A.; Bonneau, J.L.; Tichit, D. Stability, activity and selectivity study of a zinc aluminate heterogeneous catalyst for the transesterification of vegetable oil in batch reactor. Appl. Catal. A Gen. 2010, 374, 71–78. [Google Scholar] [CrossRef]
- Zubir, M.I.; Chin, Z.Y. Kinetics of Modified Zirconia-catalyzed Heterogeneous Esterification Reaction for Biodiesel Production. J. Appl. Sci. 2010, 10, 2584–2589. [Google Scholar] [CrossRef]
- Barman, S.; Vasudevan, S. Contrasting Melting Behavior of Zinc Stearate and Zinc Oleate. J. Phys. Chem. B 2006, 110, 651–665. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
R2 | 0.91 |
k04 (L2mol−1min−1g−1) | 1.34 × 10−4 ± 1.20 × 10−5 |
k0-4 (L2mol−1min−1g−1) | 1.66 × 10−4 ± 1.19 × 10−4 |
Ea1 (kJ mol−1) | 71.0 ± 1.90 |
Ea2 (kJ mol−1) | 80.4 ± 5.49 |
Ea3 (kJ mol−1) | 49.1 ± 2.49 |
Ea4 (kJ mol−1) | 34.1 ± 3.98 |
Ea−1 (kJ mol−1) | 107 ± 5.21 |
Ea−2 (kJ mol−1) | 101 ± 3.78 |
Ea−3 (kJ mol−1) | 62.0 ± 3.09 |
Ea−4 (kJ mol−1) | 83.3 ± 24.2 |
Parameter | 100 °C | 140 °C |
---|---|---|
k1 (L2mol−1min−1g−1) | 1.08 × 10−4 | 1.10 × 10−4 |
k2 (L2mol−1min−1g−1) | 1.25 × 10−4 | 1.27 × 10−4 |
k3 (L2mol−1min−1g−1) | 1.63 × 10−4 | 1.65 × 10−4 |
k4 (L2mol−1min−1g−1) | 1.34 × 10−4 | 1.35 × 10−4 |
k−1 (L2mol−1min−1g−1) | 6.41 × 10−4 | 6.59 × 10−4 |
k−2 (L2mol−1min−1g−1) | 1.67 × 10−4 | 1.71 × 10−4 |
k−3 (L2mol−1min−1g−1) | 5.30 × 10−4 | 5.39 × 10−4 |
k−4 (L2mol−1min−1g−1) | 1.66 × 10−4 | 1.69 × 10−4 |
Keq1 | 0.169 | 0.167 |
Keq2 | 0.748 | 0.745 |
Keq3 | 0.307 | 0.307 |
Keq4 | 0.808 | 0.798 |
Simulation | IRAM 6515-1 Standard | ||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | ||
Total operating time (min) | 90 | 120 | 180 | 120 | 180 | 135 | |
Stage 1 (min) | 30 | 60 | 60 | 30 | 60 | 45 | |
Stage 2 (min) | 30 | 30 | 60 | 30 | 60 | 30 | |
Stage 3 (min) | 30 | 30 | 60 | 30 | 30 | 30 | |
Stage 4 (min) | - | - | - | 30 | 30 | 30 | |
XTG | 0.97 | 0.97 | 0.98 | 0.98 | 0.99 | 0.99 | |
XFFA | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.97 | |
FAME concentration (% p/p) | 95 | 95 | 96 | 98 | 98 | 98 | 96.5 |
MG concentration (% p/p) | 1.03 | 0.90 | 0.84 | 0.50 | 0.47 | 0.45 | 0.8 |
DG concentration (% p/p) | 0.51 | 0.44 | 0.37 | 0.26 | 0.25 | 0.23 | 0.2 |
Acid value (mg KOH/g) | 0.11 | 0.11 | 0.09 | 0.04 | 0.04 | 0.04 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez Serafini, M.S.; Tonetto, G.M. Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions. Catalysts 2019, 9, 978. https://doi.org/10.3390/catal9120978
Alvarez Serafini MS, Tonetto GM. Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions. Catalysts. 2019; 9(12):978. https://doi.org/10.3390/catal9120978
Chicago/Turabian StyleAlvarez Serafini, Mariana Soledad, and Gabriela Marta Tonetto. 2019. "Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions" Catalysts 9, no. 12: 978. https://doi.org/10.3390/catal9120978
APA StyleAlvarez Serafini, M. S., & Tonetto, G. M. (2019). Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions. Catalysts, 9(12), 978. https://doi.org/10.3390/catal9120978