Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance
Abstract
:1. Introduction
2. Plasmon-Driven Surface Catalysis Reduction Reaction of 4NBT to DMAB
3. Competition between Reaction and Degradation Pathways in Plasmon-Driven Photochemistry of 4NBT to DMAB
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, M.; Zhang, Z.; Wang, P.; Li, Q.; Ma, F.; Xu, H. Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light Sci. Appl. 2013, 2, e112. [Google Scholar] [CrossRef]
- Quan, J.; Cao, E.; Mu, X.; Sun, M. Surface catalytic reaction driven by plasmonic waveguide. Appl. Mater. Today 2018, 11, 50–56. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Sun, M. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev. Sci. Instrum. 2016, 87, 033104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiao, W.; Mu, X. Au Tip-Enhanced Raman Spectroscopy for Catalysis. Appl. Sci. 2018, 8, 2026. [Google Scholar] [CrossRef]
- Lin, W.; Ren, X.; Cui, L.; Zong, H.; Sun, M. Electro-optical tuning of plasmon-driven double reduction interface catalysis. Appl. Mater. Today 2018, 11, 189–192. [Google Scholar] [CrossRef]
- Lin, W.; Xu, X.; Quan, J.; Sun, M. Propagating surface plasmon polaritons for remote excitation surface-enhanced Raman scattering spectroscopy. Appl. Spectrosc. Rev. 2018, 53, 771–782. [Google Scholar] [CrossRef]
- Cao, E.; Lin, W.; Sun, M.; Liang, W.; Song, Y. Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics 2018, 7, 145–167. [Google Scholar] [CrossRef]
- Liu, W.; Lin, W.; Zhao, H.; Wang, P.; Sun, M. The nature of plasmon-exciton codriven surface catalytic reaction. J. Raman Spectrosc. 2017, 49, 383–387. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheng, S.; Wang, R.; Sun, M. Tip-Enhanced Raman Spectroscopy. Anal. Chem. 2016, 88, 9328–9346. [Google Scholar] [CrossRef]
- Wang, X.; Cao, E.; Zong, H.; Sun, M. Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra. Appl. Mater. Today 2018, 13, 298–302. [Google Scholar] [CrossRef]
- Sun, M.T.; Xu, H.X. A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions. Small 2012, 8, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mu, X.; Wang, X.; Wang, N.; Ma, F.; Liang, W.; Sun, M. The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures. Mater. Today Phys. 2018, 5, 29–57. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Xu, X.; Zhou, Y.; Chen, M.; Sun, M. Optical characterizations of two-dimensional materials using nonlinear optical microscopies of CARS, TPEF, and SHG. Nanophotonics 2018, 7, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Cao, Y.; Wang, P.; Sun, M. Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions. Langmuir 2017, 33, 12102–12107. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Li, R.; Chen, M.; Sun, M. Ag nanoparticles-TiO2 film hybrid for plasmon-exciton co-driven surface catalytic reactions. Appl. Mater. Today 2017, 9, 251–258. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Y.; Xu, H.; Sun, M. Ascertaining p,p-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 2010, 26, 7737–7746. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ma, B.; Yang, L.; Liu, J. Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. Chem. Commun. 2015, 51, 11394–11397. [Google Scholar] [CrossRef]
- Cao, E.; Guo, X.; Zhang, L.; Shi, Y.; Lin, W.; Liu, X.; Fang, Y.; Zhou, L.; Sun, Y.; Song, Y.; et al. Electroopical synergy on plasmon-exciton-codriven surface reduction reactions. Adv. Mater. Interfaces 2017, 4, 1700869. [Google Scholar] [CrossRef]
- Lin, W.; Cao, E.; Zhang, L.; Xu, X.; Song, Y.; Liang, W.; Sun, M. Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. Nanoscale 2018, 10, 5482–5488. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Z.; Zheng, H.; Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2013, 2, 647. [Google Scholar] [CrossRef]
- Choi, H.K.; Shon, H.K.; Yu, H.; Lee, T.G.; Kim, Z.H. b2 Peaks in SERS Spectra of 4-Aminobenzenethiol: A Photochemical artifact or a real chemical enhancement? J. Phys. Chem. Lett. 2013, 4, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Fang, Y.; Zhang, Z.; Xu, H. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys. Rev. E 2013, 87, 020401. [Google Scholar] [CrossRef] [PubMed]
- Van Schrojenstein Lantman, E.M.; Deckert-Gaudig, T.; Mank, A.J.; Deckert, V.; Weckhuysen, B.M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Walkenfort, B.; Schiucker, S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 2013, 135, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Choi, J.Y.; Shin, K.S. Photoreduction of 4-nitrobenzenethiol on Au by hot electrons plasmonically generated from Ag nanoparticles: Gap-mode surface-enhanced Raman scattering observation. J. Phys. Chem. C 2015, 119, 5187–5194. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, K. Surface-induced photoreaction of 4-nitrobenzenethiol on silver: Influence of SERS-active sites. Chem. Phys. Lett. 2003, 378, 122–127. [Google Scholar] [CrossRef]
- Shin, K.S.; Lee, H.S.; Joo, S.W.; Kim, K. Surface-induced photoreduction of 4-nitrobenzenethiol on Cu revealed by surface enhanced Raman scattering spectroscopy. J. Phys. Chem. C 2007, 111, 15223–15227. [Google Scholar] [CrossRef]
- Mia, X.; Wang, Y.; Li, R.; Sun, M.; Zhang, Z.; Zheng, H. Multiple surface plasmon resonances enhanced nonlinear optical microscopy. Nanophotonics 2019, 8. [Google Scholar] [CrossRef]
- Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reactions of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.L.; Shin, K.S. Photoreduction of 4,4′-dimercaptoazobenzene on Ag revealed by Raman scattering spectroscopy. Langmuir 2013, 29, 183–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, P.; Yang, X.; Liang, W.; Sun, M. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. J. Photochem. Photobiol. C Photochem. Rev. 2016, 27, 100–112. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H. Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. ACS Catal. 2014, 4, 4027–4033. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Shi, Y.; Liu, X.; Sun, M. Femtosecond dynamics of monolayer MoS2-Ag nanoparticles hybrid probed at 532 nm. Chem. Phys. Lett. 2018, 692, 208–213. [Google Scholar]
- Hou, W.; Cronin, S.B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Lin, W.; Shi, Y.; Yang, X.; Li, J.; Cao, E.; Xu, X.; Pullerits, T.; Liang, W.; Sun, M. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 2017, 3, 33–40. [Google Scholar] [CrossRef]
- Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L.V.; Cheng, J.; Lassiter, J.B.; Carter, E.A.; Nordlander, P.; Halas, N.J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Amenomiya, Y. Adsorption of hydrogen and H2-D2 exchange reaction on alumina. J. Catal. 1971, 22, 109–122. [Google Scholar] [CrossRef]
- Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G.D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 111–1116. [Google Scholar] [CrossRef]
- Hou, W.; Hung, W.H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S.B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929–936. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.L.; Dieringer, J.A.; Van Duyne, R.P. Characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Valley, N.; Greeneltch, N.; Van Duyne, R.P.; Schatz, G.C. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604. [Google Scholar] [CrossRef]
- Mccreery, R.L. Raman Spectroscopy for Chemical Analysis; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Brooks, J.L.; Frontiera, R.R. Competition between reactions and degradation pathways in plasmon-driven photochemistry. J. Phys. Chem. C 2016, 120, 20869–20876. [Google Scholar] [CrossRef]
- Skadtchenko, B.O.; Aroca, R. Surface-enhanced Raman scattering of p-nitrothiophenol. Spectrochim. Acta Part A 2001, 57, 1009–1016. [Google Scholar] [CrossRef]
- Kim, K.; Shin, D.; Kim, K.L.; Shin, K.S. Surface-enhanced Raman scattering of 4,4′-dimercaptoazobenzene trapped in Au nanogaps. Phys. Chem. Chem. Phys. 2012, 14, 4095–4100. [Google Scholar] [CrossRef]
- Hao, E.; Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366. [Google Scholar] [CrossRef]
- Stranahan, S.M.; Willets, K.A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 2010, 10, 3777–3784. [Google Scholar] [CrossRef]
- Xu, P.; Kang, L.; Mack, N.H.; Schanze, K.S.; Han, X.; Wang, H.L. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: Cyclic redox of 4-aminothiophenol. Sci. Rep. 2013, 3, 2997. [Google Scholar] [CrossRef]
- Dong, B.; Fang, Y.R.; Xia, L.; Xu, H.X.; Sun, M.T. Is 4-nitrobenzenethiol converted to p,p′-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J. Raman Spectrosc. 2011, 42, 1205–1206. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Mu, X. Plasmonic Photocatalysts Monitored by Tip-Enhanced Raman Spectroscopy. Catalysts 2019, 9, 109. [Google Scholar] [CrossRef]
- Wang, J.; Lin, W.; Xu, X.; Ma, F.; Sun, M. Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions. Chem. Rec. 2018, 18, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, N.; Sun, Y.; Mu, X. Nanoplasmon–Semiconductor Hybrid for Interface Catalysis. Catalysts 2018, 8, 429. [Google Scholar] [CrossRef]
- Cao, E.; Sun, M.; Song, Y.; Liang, W. Exciton-plasmon hybrids for surface catalysis detected by SERS. Nanotechnology 2018, 29, 372001. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Ji, J.; Wang, J. Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance. Catalysts 2019, 9, 193. https://doi.org/10.3390/catal9020193
Gong Z, Ji J, Wang J. Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance. Catalysts. 2019; 9(2):193. https://doi.org/10.3390/catal9020193
Chicago/Turabian StyleGong, Zheng, Jialong Ji, and Jingang Wang. 2019. "Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance" Catalysts 9, no. 2: 193. https://doi.org/10.3390/catal9020193
APA StyleGong, Z., Ji, J., & Wang, J. (2019). Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance. Catalysts, 9(2), 193. https://doi.org/10.3390/catal9020193