Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment
Abstract
:1. Introduction
2. Processes Based on Ozone
3. Processes Based on Hydrogen Peroxide
3.1. Fenton-like Reactions (H2O2/catalyst)
3.2. Photo Fenton-Like Reactions (H2O2/Catalyst/Light)
3.3. Catalytic Wet Peroxide Oxidation (H2O2/Catalyst/Air)
4. Processes Based on Peroxymonosulfate
4.1. Peroxymonosulfate Activated by Perovskites (PMS/catalyst)
4.2. Peroxymonosulfate Activated by the Combination of Perovskites and Light Irradiation (PMS/Catalyst/Light)
5. Photocatalytic Oxidation (Light/catalyst)
6. Processes under Dark Ambient Conditions
7. Summary and Perspectives
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Venkatadri, R.; Peters, R.W. Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton’s reagent and titanium dioxide-assisted photocatalysis. Hazard. Waste Hazard. Mater. 1993, 10, 107–149. [Google Scholar] [CrossRef]
- Skoumal, M.; Cabot, P.-L.; Centellas, F.; Arias, C.; Rodriguez, R.M.; Garrido, J.A.; Brillas, E. Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl. Catal. B 2006, 66, 228–240. [Google Scholar] [CrossRef]
- Rosenfeldt, E.J.; Chen, P.J.; Kullman, S.; Linden, K.G. Destruction of estrogenic activity in water using UV advanced oxidation. Sci. Total Environ. 2007, 377, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Poyatos, J.M.; Munio, M.M.; Almecija, M.C.; Torres, J.C.; Hontoria, E.; Osorio, F. Advanced oxidation processes for wastewater treatment: State of the art. Water Air Soil Pollut. 2010, 205, 187–204. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment. I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment. II: Hybrid methods. Adv. Environ. Res. 2004, 8, 553–597. [Google Scholar] [CrossRef]
- Marquez, J.J.R.; Levchuk, I.; Sillanpaa, M. Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts 2018, 8, 673/1–673/18. [Google Scholar]
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Kumar, S.M. Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives. Res. J. Chem. Environ. 2011, 15, 96–112. [Google Scholar]
- Oller, I.; Malato, S.; Sanchez-Perez, J.A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination. A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef] [PubMed]
- Ferri, D.; Forni, L. Methane combustion on some perovskite-like mixed oxides. Appl. Catal. B 1998, 16, 119–126. [Google Scholar] [CrossRef]
- Zhu, J.; Thomas, A. Perovskite-type mixed oxides as catalytic material for NO removal. Appl. Catal. B 2009, 92, 225–233. [Google Scholar] [CrossRef]
- Tejuca, L.G.; Fierro, J.L.G.; Tascon, J.M.D. Structure and reactivity of perovskite-type oxides. Adv. Catal. 1989, 36, 237–328. [Google Scholar]
- Pena, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2017. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-J.; Xu, D.; Wang, Z.-L.; Wang, H.-G.; Zhang, L.-L.; Zhang, X.-B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed 2013, 52, 3887–3890. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, P.K.; Mukundan, R.; Brosha, E.; Garzon, F. Effect of perovskite electrode composition on mixed potential sensor response. Sens. Actuators B 2013, 183, 20–24. [Google Scholar] [CrossRef]
- Mori, M.; Itagaki, Y.; Sadaoka, Y. Effect of VOC on ozone detection using semiconducting sensor with SmFe1-xCoxO3 perovskite-type oxides. Sens. Actuators B 2012, 163, 44–50. [Google Scholar] [CrossRef]
- Tavakkoli, H.; Yazdanbakhsh, M. Fabrication of two perovskite-type oxide nanoparticles as the new adsorbents in efficient removal of a pesticide from aqueous solutions: Kinetic, thermodynamic and adsorption studies. Microporous Mesoporous Mater. 2013, 176, 86–94. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292–10368. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, M.; Moheb, A.; Babakhani, D. Hydrogen peroxide decomposition over nanosized La1-XCaXMnO3 (0 ≤ X ≤ 0.6) perovskite oxides. Chem. Eng. Technol. 2011, 34, 49–55. [Google Scholar] [CrossRef]
- Ariafard, A.; Aghabozorg, H.R.; Salehirad, F. Hydrogen peroxide decomposition over La0.9Sr0.1Ni1 - xCrxO3 perovskites. Catal. Commun. 2003, 4, 561–566. [Google Scholar] [CrossRef]
- Lee, Y.N.; Lago, R.M.; Fierro, J.L.G.; Gonzalez, J. Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln = La or Nd and A = K or Sr) perovskites. Appl. Catal. A 2001, 215, 245–256. [Google Scholar] [CrossRef]
- Garrido-Ramirez, E.G.; Theng, B.K.G.; Mora, M.L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Appl. Clay Sci. 2010, 47, 182–192. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 2012, 46, 10145–10153. [Google Scholar] [CrossRef] [PubMed]
- Rahim Pouran, S.; Abdul Raman, A.A.; Wan Daud, W.M.A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod. 2014, 64, 24–35. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, L.C.A.; Murad, E. Iron oxide catalysts: Fenton and Fenton-like reactions—A review. Clay Miner. 2012, 47, 285–302. [Google Scholar] [CrossRef]
- Nidheesh, P.V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Adv. 2015, 5, 40552–40577. [Google Scholar] [CrossRef]
- Ramirez, J.H.; Costa, C.A.; Madeira, L.M.; Mata, G.; Vicente, M.A.; Rojas-Cervantes, M.L.; López-Peinado, A.J.; Martín-Aranda, R.M. Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl. Catal. B 2007, 71, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl. Catal. B 2010, 99, 1–26. [Google Scholar] [CrossRef]
- Hassan, H.; Hameed, B.H. Iron-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem. Eng. J. 2011, 171, 912–918. [Google Scholar] [CrossRef]
- Kuznetsova, E.V.; Savinov, E.N.; Vostrikova, L.A.; Parmon, V.N. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl. Catal. B 2004, 51, 165–170. [Google Scholar] [CrossRef]
- Velichkova, F.; Delmas, H.; Julcour, C.; Koumanova, B. Heterogeneous fenton and photo-fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. AIChE J. 2017, 63, 669–679. [Google Scholar] [CrossRef]
- Ramirez, J.H.; Maldonado-Hodar, F.J.; Perez-Cadenas, A.F.; Moreno-Castilla, C.; Costa, C.A.; Madeira, L.M. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl. Catal. B 2007, 75, 312–323. [Google Scholar] [CrossRef]
- Duarte, F.; Maldonado-Hodar, F.J.; Perez-Cadenas, A.F.; Madeira, L.M. Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl. Catal. B 2009, 85, 139–147. [Google Scholar] [CrossRef]
- Sun, L.; Yao, Y.; Wang, L.; Mao, Y.; Huang, Z.; Yao, D.; Lu, W.; Chen, W. Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst. Chem. Eng. J. 2014, 240, 413–419. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Zhang, Z.; Sun, L.; Lu, W.; Chen, W.; Chen, H. Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chem. Eng. J. 2014, 251, 348–354. [Google Scholar] [CrossRef]
- Carrasco-Diaz, M.R.; Castillejos-Lopez, E.; Cerpa-Naranjo, A.; Rojas-Cervantes, M.L. On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2. Microporous Mesoporous Mater. 2017, 237, 282–293. [Google Scholar] [CrossRef]
- Eberhardt, M.K.; Ramirez, G.; Ayala, E. Does the reaction of copper(I) with hydrogen peroxide give hydroxyl radicals? A study of aromatic hydroxylation. J. Org. Chem. 1989, 54, 5922–5926. [Google Scholar] [CrossRef]
- Lassmann, G.; Eriksson, L.A.; Himo, F.; Lendzian, F.; Lubitz, W. Electronic Structure of a Transient Histidine Radical in Liquid Aqueous Solution: EPR Continuous-Flow Studies and Density Functional Calculations. J. Phys. Chem. A 1999, 103, 1283–1290. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Chen, X.; Guan, Z. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance and stability. J. Hazard. Mater. 2016, 318, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.J.; Carbajo, M.; Beltran, F.J.; Acedo, B.; Gimeno, O. Perovskite catalytic ozonation of pyruvic acid in water. Appl. Catal. B 2006, 62, 93–103. [Google Scholar] [CrossRef]
- Carbajo, M.; Rivas, F.J.; Beltran, F.J.; Alvarez, P.; Medina, F. Effects of different catalysts on the ozonation of pyruvic acid in water. Ozone Sci. Eng. 2006, 28, 229–235. [Google Scholar] [CrossRef]
- Carbajo, M.; Beltran, F.J.; Medina, F.; Gimeno, O.; Rivas, F.J. Catalytic ozonation of phenolic compounds. Appl. Catal. B 2006, 67, 177–186. [Google Scholar] [CrossRef]
- Carbajo, M.; Beltran, F.J.; Gimeno, O.; Acedo, B.; Rivas, F.J. Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst. Appl. Catal. B 2007, 74, 203–210. [Google Scholar] [CrossRef]
- Beltran, F.J.; Pocostales, P.; Alvarez, P.M.; Lopez-Pineiro, F. Catalysts to improve the abatement of sulfamethoxazole and the resulting organic carbon in water during ozonation. Appl. Catal. B 2009, 92, 262–270. [Google Scholar] [CrossRef]
- Beltran, F.J.; Pocostales, P.; Alvarez, P.; Garcia-Araya, J.F.; Gimeno, O. Perovskite catalytic ozonation of some pharmaceutical compounds in water. Ozone Sci. Eng. 2010, 32, 230–237. [Google Scholar] [CrossRef]
- Orge, C.A.; Orfao, J.J.M.; Pereira, M.F.R.; Barbero, B.P.; Cadus, L.E. Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Appl. Catal. B 2013, 140-141, 426–432. [Google Scholar] [CrossRef]
- Afzal, S.; Quan, X.; Zhang, J. High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B 2017, 206, 692–703. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Li, Q.; Qi, F.; Xu, B.; Chen, Z. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism. Sep. Purif. Technol. 2018, 197, 261–270. [Google Scholar] [CrossRef]
- Beltran, F.J.; Aguinaco, A.; Garcia-Araya, J.F.; Oropesa, A.L. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res. 2008, 42, 3799–3808. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.J.; Carbajo, M.; Beltran, F.; Gimeno, O.; Frades, J. Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. J. Hazard. Mater. 2008, 155, 407–414. [Google Scholar] [CrossRef] [PubMed]
- De Laat, J.; Gallard, H. Catalytic Decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ. Sci. Technol. 1999, 33, 2726–2732. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhu, L.; Wang, N.; Tang, H.; Cao, M.; She, Y. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol. 2010, 44, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Nie, Y.; Hu, C.; Qu, J. Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Appl. Catal. B 2012, 125, 418–424. [Google Scholar] [CrossRef]
- Xiao, P.; Hong, J.; Wang, T.; Xu, X.; Yuan, Y.; Li, J.; Zhu, J. Oxidative degradation of organic dyes over supported perovskite oxide LaFeO3/SBA-15 under ambient conditions. Catal. Lett. 2013, 143, 887–894. [Google Scholar] [CrossRef]
- Xiao, P.; Li, H.; Wang, T.; Zhu, J. Efficient Fenton-like La-Cu-O/SBA-15 catalyst for the degradation of organic dyes under ambient conditions. RSC Adv. 2014, 4, 12601–12604. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Xiao, P.; Zhan, Y.; Lv, K.; Wu, L.; Li, M. On the mechanism of oxidative degradation of rhodamine B over LaFeO3 catalysts supported on silica materials: Role of support. Microporous Mesoporous Mater. 2016, 221, 159–166. [Google Scholar] [CrossRef]
- Giuseppina Iervolinoa, V.V.; Sanninoa, D.; Rizzob, L.; Sarnoa, G.; Lyubov, P.C.; Isupovac, A. Influence of operating conditions in the photo-Fenton removal of tartrazine on structured catalysts. Chem. Eng. Trans. 2015, 43, 979–984. [Google Scholar]
- Zhao, H.; Cao, J.; Lv, H.; Wang, Y.; Zhao, G. 3D nano-scale perovskite-based composite as Fenton-like system for efficient oxidative degradation of ketoprofen. Catal. Commun. 2013, 41, 87–90. [Google Scholar] [CrossRef]
- Li, J.; Miao, J.; Duan, X.; Dai, J.; Liu, Q.; Wang, S.; Zhou, W.; Shao, Z. Fine-tuning surface properties of perovskites via nanocompositing with inert oxide toward ceveloping superior catalysts for advanced oxidation. Adv. Funct. Mater. 2018, 28, 1804654. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, L.; Li, Y.-Y.; Hu, C. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. J. Hazard. Mater. 2015, 294, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Rusevova, K.; Koeferstein, R.; Rosell, M.; Richnow, H.H.; Kopinke, F.-D.; Georgi, A. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem. Eng. J. 2014, 239, 322–331. [Google Scholar] [CrossRef]
- Taran, O.P.; Ayusheev, A.B.; Ogorodnikova, O.L.; Prosvirin, I.P.; Isupova, L.A.; Parmon, V.N. Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Appl. Catal. B 2016, 180, 86–93. [Google Scholar] [CrossRef]
- Ben Hammouda, S.; Zhao, F.; Safaei, Z.; Babu, I.; Ramasamy, D.L.; Sillanpaa, M. Reactivity of Ceria-Perovskite composites CeO2-LaMO3 (M=Cu, Fe) in catalytic wet peroxidative oxidation of pollutant Bisphenol F: Characterization, kinetic and mechanism studies. Appl. Catal. B 2017, 218, 119–136. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, L.; Lei, M.; She, Y.; Cao, M.; Tang, H. Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catal. 2011, 1, 1193–1202. [Google Scholar] [CrossRef]
- Song, Z.; Wang, N.; Zhu, L.; Huang, A.; Zhao, X.; Tang, H. Efficient oxidative degradation of triclosan by using an enhanced Fenton-like process. Chem. Eng. J. 2012, 198-199, 379–387. [Google Scholar] [CrossRef]
- Magalhaes, F.; Moura, F.C.C.; Ardisson, J.D.; Lago, R.M. LaMn1-xFexO3 and LaMn0.1-xFe0.90MoxO3 perovskites: Synthesis, characterization and catalytic activity in H2O2 reactions. Mater. Res. 2008, 11, 307–312. [Google Scholar] [CrossRef]
- Jauhar, S.; Dhiman, M.; Bansal, S.; Singhal, S. Mn3+ ion in perovskite lattice: A potential Fenton’s reagent exhibiting remarkably enhanced degradation of cationic and anionic dyes. J. Sol-Gel Sci. Technol. 2015, 75, 124–133. [Google Scholar] [CrossRef]
- Carrasco-Diaz, M.R.; Castillejos-Lopez, E.; Cerpa-Naranjo, A.; Rojas-Cervantes, M.L. Efficient removal of paracetamol using LaCu1-xMxO3 (M = Mn, Ti) perovskites as heterogeneous Fenton-like catalysts. Chem. Eng. J. 2016, 304, 408–418. [Google Scholar] [CrossRef]
- Sannino, D.; Vaiano, V.; Ciambelli, P.; Isupova, L.A. Mathematical modelling of the heterogeneous photo-Fenton oxidation of acetic acid on structured catalysts. Chem. Eng. J. 2013, 224, 53–58. [Google Scholar] [CrossRef]
- Loghambal, S.; Agvinos Catherine, A.J. Mathematical analysis of the heterogeneous photo-Fenton oxidation of acetic acid on structured catalysts. J. Math. Chem. 2016, 54, 1146–1158. [Google Scholar] [CrossRef]
- Singh, C.; Rakesh, M. Oxidation of phenol using LaMnO3 perovskite, TiO2, H2O2 and UV radiation. Indian J. Chem. Technol. 2010, 17, 451–454. [Google Scholar]
- Soltani, T.; Lee, B.-K. Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol. Chem. Eng. J. 2017, 313, 1258–1268. [Google Scholar] [CrossRef]
- Ju, L.; Chen, Z.; Fang, L.; Dong, W.; Zheng, F.; Shen, M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. J. Am. Ceram. Soc. 2011, 94, 3418–3424. [Google Scholar] [CrossRef]
- Phan, T.T.N.; Nikoloski, A.N.; Bahri, P.A.; Li, D. Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. J. Ind. Eng. Chem. 2018, 61, 53–64. [Google Scholar] [CrossRef]
- Sannino, D.; Vaiano, V.; Ciambelli, P.; Isupova, L.A. Structured catalysts for photo-Fenton oxidation of acetic acid. Catal. Today 2011, 161, 255–259. [Google Scholar] [CrossRef]
- Sannino, D.; Vaiano, V.; Isupova, L.A.; Ciambelli, P. Heterogeneous photo-Fenton oxidation of organic pollutants on structured catalysts. J. Adv. Oxid. Technol. 2012, 15, 294–300. [Google Scholar] [CrossRef]
- Vaiano, V.; Isupova, L.A.; Ciambelli, P.; Sannino, D. Photo-fenton oxidation of t-butyl methyl ether in presence of LaFeO3 supported on monolithic structure. J. Adv. Oxid. Technol. 2014, 17, 187–192. [Google Scholar] [CrossRef]
- Orak, C.; Atalay, S.; Ersoz, G. Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported perovskite-type catalysts. Sep. Sci. Technol. 2017, 52, 1310–1320. [Google Scholar] [CrossRef]
- An, J.; Zhu, L.; Wang, N.; Song, Z.; Yang, Z.; Du, D.; Tang, H. Photo-Fenton like degradation of tetrabromobisphenol A with graphene BiFeO3 composite as a catalyst. Chem. Eng. J. 2013, 219, 225–237. [Google Scholar] [CrossRef]
- Kondrakov, A.O.; Ignatev, A.N.; Lunin, V.V.; Frimmel, F.H.; Braese, S.; Horn, H. Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO2 suspensions: An isotope labeling study. Appl. Catal. B 2016, 182, 424–430. [Google Scholar] [CrossRef]
- Chiou, C.-S.; Chen, Y.-H.; Chang, C.-T.; Chang, C.-Y.; Shie, J.-L.; Li, Y.-S. Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+. J. Hazard. Mater. 2006, 135, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Wang, C.; Yin, K. Study of the stability of H2O2 in alkaline slurry. Bandaoti Jishu 2012, 37, 850–854. [Google Scholar]
- Ovejero, G.; Sotelo, J.L.; Martinez, F.; Gordo, L. Novel heterogeneous catalysts in the wet peroxide oxidation of phenol. Water Sci. Technol. 2001, 44, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.L.; Ovejero, G.; Martinez, F.; Melero, J.A.; Milieni, A. Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1-xCuxO3 perovskite catalyst. Appl. Catal. B 2004, 47, 281–294. [Google Scholar] [CrossRef]
- Faye, J.; Guelou, E.; Barrault, J.; Tatibouet, J.M.; Valange, S. LaFeO3 Perovskite as new and performant catalyst for the wet peroxide oxidation of organic pollutants in ambient conditions. Top. Catal. 2009, 52, 1211–1219. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, N.D.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Khan, A.; Liao, Z.; Liu, Y.; Jawad, A.; Ifthikar, J.; Chen, Z. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst. J. Hazard. Mater. 2017, 329, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Ao, Z.; Sun, H.; Indrawirawan, S.; Wang, Y.; Kang, J.; . Liang, F.; Zhu, Z.H.; Wang, S. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces 2015, 7, 4169–4178. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D.; Gonzalez, M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol. 2006, 40, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liang, H.; Zhou, G.; Wang, S. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. J. Colloid Interface Sci. 2013, 394, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Dong, C.; Kong, D.; Lu, J. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. J. Hazard. Mater. 2015, 285, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Ben Hammouda, S.; Zhao, F.; Safaei, Z.; Srivastava, V.; Lakshmi Ramasamy, D.; Iftekhar, S.; . kalliola, S.; Sillanpää, M. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study. Appl. Catal. B 2017, 215, 60–73. [Google Scholar] [CrossRef]
- Su, C.; Duan, X.; Miao, J.; Zhong, Y.; Zhou, W.; Wang, S.; Shao, Z. Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: A mechanistic study. ACS Catal. 2017, 7, 388–397. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chen, Y.-C.; Lin, T.-Y.; Yang, H. Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water. J. Colloid Interface Sci. 2017, 497, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhou, W.; Shao, Z.; Sunarso, J.; Su, C.; Wang, S. SrCo1-xTixO3-δ perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. Sci. Rep. 2017, 7, 44215. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Su, C.; Miao, J.; Zhong, Y.; Shao, Z.; Wang, S. Sun, H. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B 2018, 220, 626–634. [Google Scholar] [CrossRef]
- Lu, S.; Wang, G.; Chen, S.; Yu, H.; Ye, F.; Quan, X. Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants. J. Hazard. Mater. 2018, 353, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Sunarso, J.; Duan, X.; Zhou, W.; Wang, S.; Shao, Z. Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. J. Hazard. Mater. 2018, 349, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Guo, Y.; Zhang, Y.; Xu, B.; Qi, F. LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism. Chem. Eng. J. 2016, 304, 897–907. [Google Scholar] [CrossRef]
- RSolis, R.; Rivas, F.J.; Gimeno, O. Removal of aqueous metazachlor, tembotrione, tritosulfuron and ethofumesate by heterogeneous monopersulfate decomposition on lanthanum-cobalt perovskites. Appl. Catal. B 2017, 200, 83–92. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chen, Y.-C.; Lin, Y.-F. LaMO3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water. Chem. Eng. Sci. 2017, 160, 96–105. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, Y.; Han, F.; Guo, H.; Huang, Y.; Li, R.; Qi, F.; Ma, J. Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways. Chem. Eng. J. 2018, 352, 601–611. [Google Scholar] [CrossRef]
- Chu, Y.; Tan, X.; Shen, Z.; Liu, P.; Han, N.; Kang, J.; Duan, X.; Wang, S.; Liu, L.; Liu, S. Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation. J. Hazard. Mater. 2018, 356, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Chi, F.; Song, B.; Yang, B.; Lv, Y.; Ran, S.; Huo, Q. Activation of peroxymonosulfate by BiFeO3 microspheres under visible light irradiation for decomposition of organic pollutants. RSC Adv. 2015, 5, 67412–67417. [Google Scholar] [CrossRef]
- Solis, R.R.; Rivas, F.J.; Gimeno, O.; Perez-Bote, J.-L. Synergism between peroxymonosulfate and LaCoO3-TiO2 photocatalysis for oxidation of herbicides. Operational variables and catalyst characterization assessment. J. Chem. Technol. Biotechnol. 2017, 92, 2159–2170. [Google Scholar] [CrossRef]
- Ben Hammouda, S.; Zhao, F.; Safaei, Z.; Ramasamy, D.L.; Doshi, B.; Sillanpaa, M. Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation. Appl. Catal. B 2018, 233, 99–111. [Google Scholar] [CrossRef]
- Fendrich, A.M.; Quaranta, A.; Orlandi, M.; Bettonte, M.; Miotello, A. Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. Appl. Sci. 2018, 9, 118. [Google Scholar] [CrossRef]
- Li, S.; Jing, L.; Fu, W.; Yang, L.; Xin, B.; Fu, H. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mater. Res. Bull. 2007, 42, 203–212. [Google Scholar] [CrossRef]
- Su, H.J.; Jing, L.Q.; Shi, K.Y.; Yao, C.H.; Fu, H.G. Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanopart. Res. 2010, 12, 967–974. [Google Scholar] [CrossRef]
- Hu, R.; Li, C.; Wang, X.; Sun, Y.; Jia, H.; Su, H.; Zhang, Y. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun. 2012, 29, 35–39. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Zhang, Y. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis. Mater. Res. Bull. 2014, 50, 18–22. [Google Scholar] [CrossRef]
- Hou, L.; Sun, G.; Liu, K.; Li, Y.; Gao, F. Preparation, characterization and investigation of catalytic activity of Li-doped LaFeO3 nanoparticles. J. Sol-Gel Sci. Technol. 2006, 40, 9–14. [Google Scholar] [CrossRef]
- Shen, H.; Xue, T.; Wang, Y.; Cao, G.; Lu, Y.; Fang, G. Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination. Mater. Res. Bull. 2016, 84, 15–24. [Google Scholar] [CrossRef]
- Tang, P.; Tong, Y.; Chen, H.; Cao, F.; Pan, G. Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr. Appl. Phys. 2013, 13, 340–343. [Google Scholar] [CrossRef]
- Li, F.-t.; Liu, Y.; Liu, R.-h.; Sun, Z.-m.; Zhao, D.-s.; Kou, C.-g. Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Mater. Lett. 2010, 64, 223–225. [Google Scholar] [CrossRef]
- Thirumalairajan, S.; Girija, K.; Ganesh, I.; Mangalaraj, D.; Viswanathan, C.; Balamurugan, A.; Ponpandian, N. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and associated photocatalytic activity. Chem. Eng. J. 2012, 209, 420–428. [Google Scholar] [CrossRef]
- Ding, J.; Lue, X.; Shu, H.; Xie, J.; Zhang, H. Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst. Mater. Sci. Eng. B 2010, 171, 31–34. [Google Scholar] [CrossRef]
- Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Li, Z. Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J. Alloy. Compd. 2017, 709, 542–548. [Google Scholar] [CrossRef]
- Ren, X.; Yang, H.; Sai, G.; Zhou, J.; Yang, T.; Zhang, X.; Cheng, Z.; Sun, S. Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale 2016, 8, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Niu, H.; Tao, Z.; Song, J.; Mao, C.; Zhang, S.; Chen, C.; Wang, D. Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres. J. Alloys Compd. 2013, 576, 5–12. [Google Scholar] [CrossRef]
- Song, S.; Xu, L.; He, Z.; Chen, J.; Xiao, X.; Yan, B. Mechanism of the Photocatalytic Degradation of C.I. Reactive Black 5 at pH 12.0 Using SrTiO3/CeO2 as the Catalyst. Environ. Sci. Technol. 2007, 41, 5846–5853. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xu, L.J.; He, Z.Q.; Ying, H.P.; Chen, J.M.; Xiao, X.Z.; Yan, B. Photocatalytic degradation of CI Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst. J. Hazard. Mater. 2008, 152, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Flores, A.M.; Sanchez-Martinez, D.; del Rocio Hernandez-Romero, M.; Zarazua-Morin, M.E.; Torres-Martinez, L.M. Visible-light-driven BaBiO3 perovskite photocatalysts: Effect of physicochemical properties on the photoactivity towards water splitting and the removal of rhodamine B from aqueous systems. J. Photochem. Photobiol. A 2019, 368, 70–77. [Google Scholar] [CrossRef]
- Zheng, H.X.; Zhang, T.T.; Zhu, Y.M.; Liang, B.; Jiang, W. KBiO3 as an Effective Visible-Light-Driven Photocatalyst: Degradation Mechanism for Different Organic Pollutants. Chemphotochem 2018, 2, 442–449. [Google Scholar] [CrossRef]
- Sun, S.; Wang, W.; Zhang, L.; Shang, M. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions. J. Phys. Chem. C 2009, 113, 12826–12831. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.; Yin, K.; Dong, S.; Ren, Z.; Yuan, F.; Yu, T.; Zou, Z.G.; Liu, J.-M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 2007, 19, 2889–2892. [Google Scholar] [CrossRef]
- Huang, H.; Lu, B.; Liu, Y.; Wang, X.; Hu, J. Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN. Nano 2018, 13, 1850121. [Google Scholar] [CrossRef]
- Chasse, M.; Hallett-Tapley, G.L. Gold nanoparticle-functionalized niobium oxide perovskites as photocatalysts for visible light-induced aromatic alcohol oxidations. Can. J. Chem. 2018, 96, 664–671. [Google Scholar] [CrossRef]
- Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A-Gen. 2005, 288, 74–79. [Google Scholar] [CrossRef]
- Dong, B.; Li, Z.C.; Li, Z.Y.; Xu, X.R.; Song, M.X.; Zheng, W.; Wang, C.; Al-Deyab, S.S.; El-Newehy, M. Highly Efficient LaCoO3 Nanofibers Catalysts for Photocatalytic Degradation of Rhodamine, B. J. Am. Ceram. Soc. 2010, 93, 3587–3590. [Google Scholar] [CrossRef]
- Qin, C.; Li, Z.; Chen, G.; Zhao, Y.; Lin, T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. J. Power Sources 2015, 285, 178–184. [Google Scholar] [CrossRef]
- Xiang, Q.; Lang, D.; Shen, T.; Liu, F. Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal. B 2015, 162, 196–203. [Google Scholar] [CrossRef]
- Guo, J.; Dai, Y.-z.; Chen, X.-j.; Zhou, L.-l.; Liu, T.-h. Synthesis and characterization of Ag3PO4/LaCoO3 nanocomposite with superior mineralization potential for bisphenol A degradation under visible light. J. Alloys Compd. 2017, 696, 226–233. [Google Scholar] [CrossRef]
- Gao, K.; Li, S. Multi-modal TiO2–LaFeO3 composite films with high photocatalytic activity and hydrophilicity. Appl. Surf. Sci. 2012, 258, 6460–6464. [Google Scholar] [CrossRef]
- Dhinesh Kumar, R.; Thangappan, R.; Jayavel, R. Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J. Phys. Chem. Solids 2017, 101, 25–33. [Google Scholar] [CrossRef]
- Schunemann, S.; van Gastel, M.; Tuysuz, H.A. CsPbBr3/TiO2 Composite for Visible-Light-Driven Photocatalytic Benzyl Alcohol Oxidation. Chemsuschem 2018, 11, 2057–2061. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, Y.; Wu, L.; Wu, F.; Wang, R.; Zhang, D.; Zhu, J.; Li, H. An efficient round-the-clock La2NiO4 catalyst for breaking down phenolic pollutants. RSC Adv. 2012, 2, 4822–4828. [Google Scholar] [CrossRef]
- Sun, M.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Liu, D. Dye degradation activity and stability of perovskite-type LaCoO3-x (x = 0∼0.075). Mater. Trans. 2010, 51, 2208–2214. [Google Scholar] [CrossRef]
- Tummino, M.L.; Laurenti, E.; Deganello, F.; Bianco Prevot, A.; Magnacca, G. Revisiting the catalytic activity of a doped SrFeO3 for water pollutants removal: Effect of light and temperature. Appl. Catal. B 2017, 207, 174–181. [Google Scholar] [CrossRef]
- Wu, J.-M.; Wen, W. Catalyzed degradation of azo dyes under ambient conditions. Environ. Sci. Technol. 2010, 44, 9123–9127. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Jiang, T.; Dang, Y.; He, J.; Chen, S.-Y.; Kuo, C.-H.; Kriz, D.; Meng, Y.; Meguerdichian, A.G.; Suib, S.T. Mechanism studies on Methyl Orange dye degradation by perovskite-type LaNiO3-δ under dark ambient conditions. Appl. Catal. A 2018, 549, 302–3099. [Google Scholar] [CrossRef]
- Leiw, M.Y.; Guai, G.H.; Wang, X.; Tse, M.S.; Ng, C.M.; Tan, O.K. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3-δ metal oxide. J. Hazard. Mater. 2013, 260, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Motuzas, J.; Martens, W.; Diniz da Costa, J.C. Degradation of azo dye Orange II under dark ambient conditions by calcium strontium copper perovskite. Appl. Catal. B 2018, 221, 691–700. [Google Scholar] [CrossRef]
Concentration | Treatment Efficiency | ||||||
---|---|---|---|---|---|---|---|
Reference | Catalyst | Target Pollutant | Catalyst | Pollutant | H2O2 | Degradation of Pollutant | TOC Removal |
[54] | BiFeO3 | RhB, phenol, MB | 0.5 g/L | 4.79 g/L | 10 mM | 95.2% (RhB) in 90 min | 90% in 2 h |
[55] | LaTi1-xCuxO3 (x = 0.0–1) | RhB | 1.4 g/L | 8 g/L | 10 mM | 84% in 2 h | - |
[56] | LaFeO3/SBA-15 | RhB, MB, brilliant red X-3B, direct scarlet 4BS | 2 g/L | 9.1 mg/L | 0.34 mM | 87% in 3 h (RhB) 66% MB 42% for the others | - |
[57] | La-Cu-O/SBA-15 | RhB and other dyes | Not indicated, [RhB]/[catalyst]= 0.0045, 0.077 | - | - | 85-95% in 3 h | 100% in 3 h |
[58] | LaFeO3/SBA-15, SBA-16, MCF and non-porous silica | RhB | 2 g/L | 9.6 mg/L | 0.34 mM | 97% in 2 h for LaFeO3/MCF | - |
[60] | BiFeO3/carbon aerogel (BFO/CA) | ketoprofen | 0.3 g/L | 40 mg/L | 12 mM | 95% in 150 min | 60% in 5 h |
[61] | La1+xFeO3 (L1+xFO, 0 ≤ x ≤ 0.2) nanocomposite | Methyl orange | 0.5 g/L | 5 mg/L | 0.198 M | 100% in 90 min (pH 3) | 96% in 4 h |
[62] | LaFeO3 | Different herbicides and pharmaceutical | 1.4 g/L | 3 mg/L | 23 mM | 100% of SMX in 2 h (pH 6.5) | 22% in 2 h |
[63] | LaFeO3, BiFeO3 | phenol, MTBE | 0.01–1 g/L | 25 mg/L phenol 50 mg/L MTBE | 3 g/L = 88 mM | 90–95% phenol in 6 h 80% MTBE in 6 h | - |
[64] | LaBO3 (B= Cu, Fe, Mn, Co, Ni) | phenol | 5 g/L | 0.01 M | 0.7 M | 85% in 10 h | 21% in 10 h |
[65] | Ceria-LaCuO3, ceria-LaFeO3 | Bis-phenol | 0.2 g/L | 20 mg/L | 10 mM | 98% in 45 min (ceria-LaCuO3) 92% in 42 min (ceria-LaFeO3) | - |
[66] | BiFeO3 modified by chelating agents | BPA | 0.5 g/L | 0.1 mM | 10 mM | 91.2% in 2 h | - |
[67] | BiFeO3 (BFO); BFO modified by EDTA | Triclosan | 0.5 g/L | 34.5 mM | 10 mM | 82.7% in 3 h (BFO) 100% in 30 min (BFO-EDTA) | - |
[68] | LaMn1-xFexO3, LaMn0.1-x Fe0.9MoxO3 | MB | 30 mg (volume not indicated) | 0.1 g/L | 2.9 mM | 20% in 1 h (LaMn0.01Fe0.9Mo0.09O3) | - |
[69] | LaMnxFe1-xO3 (x = 0.1–0.5), absence and presence of visible light | Anionic and cationic dyes | 0.2 g/L | 15 mg/L cationic dyes 60 mg/L anionic dyes | 17 mM | Anionic dyes: 66–98% in 4 h (no light); 90–95.8 in 70 min (light) Cationic dyes: 90-99.4% in 5 h (no light); 98–99.7% in 30 min (light) | - |
[70] | LaCuxM1-xO3 (0.0 ≤ x ≤ 0.8, M= Mn, Ti) | paracetamol | 0.2 g/L | 50 mg/L | 13.8 mM | 80–97% in 5 h | 47–54% in 5 h |
[73] | LaMnO3 +UV light | phenol | 0.6 g/L | 0.1 g/L | 14.8 mM | 99.92% in 4 h | - |
[74] | Catalyst (Bi0.97Ba0.03FeO3, BiFe0.9Cu0.1O3, Bi0.97Ba0.03 Fe0.9Cu0.1O3) + visible light | 2-chlorophenol | 0.4 g/L | 50 mg/L | 10 mM | 100% in 70 min (BiFe0.9Cu0.1O3, Bi0.97Ba0.03 Fe0.9Cu0.1O3) 63% in 70 min (Bi0.97Ba0.03FeO3) | 68% in 1 h (BiFe0.9Cu0.1O3) 73% in 1 h (Bi0.97Ba0.03 Fe0.9Cu0.1O3) |
[75] | EuFeO3 (EFO) + visible light | RhB | 1 g/L | 5 mg/L | 0.2 mM | 37% EFO+vis. light 50% EFO+ H2O2 71% EFO+ H2O2+ vis. light | - |
[76] | LaFe1-xCuxO3 + visible light | Methyl orange | 0.8 g/L | 10 mg/L | 8.8 mM | 92.9% in 1 h | - |
[59] | LaFeO3 + UV light Pt/LaFeO3 + UV light | tartrazine | 81.25 g/L | 40, 60, 80 mg/L | 0.0019–0.0076 mol/h | 43% in 3 h (LaFeO3) 63% in 3 h (Pt/LaFeO3) (40 mg/L and 0.0038 mol/h) 100% in 30 min (catalyst + UV light) | 45% in 3 h (LaFeO3); 65% in 3 h (Pt/LaFeO3) (40 mg/L and 0.0038 mol/h) 100% in 40 min (catalyst + UV light) |
[77] | LaMeO3 (Me= Mn, Co, Fe, Ni, Cu)(cordierite, and Pt/LaMnO3/cordierite | acetic acid | 9.4–40 g/L | 1.26 g/L | 83 mM | - | 54% in 5 h (Pt/LaMnO3) 60% in 5 h (LaFeO3) |
[78] | LaFeO3/corundum with different loads of LaFeO3 | acetic acid, ethanol, acetaldehyde, oxalic acid | 93.75 g/L | 0.5 g/L | 83 mM | - | 97% (acetic acid); 53% (ethanol); 62% (acetaldehyde) and 95% (oxalic acid) in 5 h |
[79] | LaFeO3/corundum | MTBE | 9.4-4 g/L | 0.5 g/L | 0–42 mM | - | 100% in 2 h |
[80] | LaFeO3, BiFeO3, LaTi0.15 Fe0.85 O3 and BiTi0.15 Fe0.85 O3 | methylparaben | 0.1 g/L | 5 mg/L | 0.5 mM | 82.8% in 90 min | - |
[81] | graphene-BiFeO3+ + EDTA + visible light | TTBBA | 0.5 g/L | 0.011 g/L | 20 mM | 80% in 15 min | 62.8% in 3 h |
Concentration | Treatment Efficiency | ||||||
---|---|---|---|---|---|---|---|
Reference | Catalyst | Target Pollutant | Catalyst | Pollutant | PMS | Degradation | TOC Removal |
[95] | ACoO3 (A = La, Ba, Sr and Ce) | phenol | 0.2 g/L | 20 mg/L | 0.1 mM | 95% in 180 min (LaCoO3 and SrCoO3) 80% in 180 min (BaCoO3 and CeCoO3) | 81% in 6 h (LaCoO3 and SrCoO3) 35% in 6 h (BaCoO3 and CeCoO3) |
[96] | PrBaCo2O5+δ | phenol, MB | 0.1 g/L (for phenol) 0.05 g/L (for MB) | 20 mg/L phenol10 mg/L MB | 21.2 mM (for phenol) 2.3 mM (for MB) | 100% phenol in 30 min 100% MB in 15 min | 39.3% at pH 2, 82% at pH 9 |
[97] | LaCoO3/ZrO2 | RhB | 0.1 g/L | 10 mg/L | 0.1 g/L | 100% in 60 min | - |
[98] | SrCo1−xTixO3−δ (SCTx, x = 0.1, 0.2, 0.4, 0.6) | phenol | 0.1 g/L | 20 mg/L | 11.9 mM | 85% in 15 min for SCT0.4 | 76.2% in 2 h |
[99] | Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) | phenol | 0.1 g/L | 20 mg/L | 6.5 mM | 100% in 30 min | - |
[100] | LaCo0.4Cu0.6O3 | phenol | 0.1 g/L | 20 mg/L | 0.65 mM | 100% in 12 min | - |
[101] | LaCo1−xMnxO3+δ (LCM, x = 0, 0.3, 0.5, 0.7 and 1.0) | phenol | 0.1 g/L | 20 mg/L | 3.25 mM | 100% in 20 min for LaCoO3.002 100% in 40 min for LaCo0.5Mn0.5O3.053 | 67% in 40 min |
[102] | LaCoO3 (LCO) LCO-SiO2, CTAB-LCO | PBSA | 0.5 g/L | 5 mg/L | 5 mM | 100% in 30 min (LCO-SiO2) 100% in 5 min (LCO and CTAB-LCO) | - |
[103] | LaCoO3 | four herbicides (metazachlor, tembotrione, tritosufuron and ethofumesate) | 0.5 g/L | 1 mg/L (each) | 0.1 mM | 95% metazachlor, 85% tembotrione, 5% tritosufuron; 45% ethofumesate t = 60 min; pH = 7 | - |
[104] | LaMO3 (M= Fe, Ni, Cu, Co) | RhB | 0.1 g/L | 10 mg/L | 0.6 mM | 42% in 60 min (LaFeO3) 60% in 60 min (LaNiO3) 45% in 60 min (CuFeO3) 98% in 60 min (LaFeO3) | - |
[105] | LaFeO3 | diclofenac | 0.6 g/L | 0.15 mM | 0.3 mM | 100% in 1 h | 50% in 2 h |
[106] | La0.8Ca0.2Fe0.94O3-δ and Ag-La0.8Ca0.2Fe0.94O3-δ | MB, phenol and Rh6G | 1.0 g/L | 10 mg/L MB | 0.24 g/L (for MB and Rh6G) 0.48 g/L (for phenol) | 84–90% MB in 45 min 100% phenol in 15 min 100% Rh6G in 10 min | - |
[107] | BiFeO3 + visible light | RhB | 1 g/L | 5 mg/L | 5 mM | 63% in 40 min (25 °C) 93% in 40 min (45 °C) | - |
[108] | LaCoO3-TiO2 (Co:Ti = 0:1–1:0) + UVA light | four herbicides: metazachlor, tembotrione, tritosufuron and ethofumesate | 0.5 g/L | 1 mg/L (each) | 0.1 mM | 90% metazachlor, 97% tembotrione, 20% tritosufuron; 70% ethofumesate t = 60 min; pH = 7 | - |
[109] | Sr2CoFeO6 + UV light | bisphenol F | 0.3 g/L | 20 mg/L | 0.1 mM | 75% in 2 h | 90% in 6 h |
Reference | Catalyst | Preparation Procedure | Contaminant | Light (Irradiation Source) |
---|---|---|---|---|
[111] | LaFeO3 | Sol–gel | RhB | Visible |
[112] | LaFeO3 | Sol–gel, SBA-16 as template | RhB | Visible |
[114] | LnFeO3 (Ln = La, Sm) | Sol–gel | RhB | Visible |
[119] | LaFeO3 | Hydrothermal | RhB | Visible |
[120] | ReFeO3 microspheres (Re: La, Sm, Eu, Gd) | Microwave | RhB | Visible |
[121] | LaFeO3, g-C3N4 | Solvothermal | RhB | Visible |
[122] | LaFeO3-rGO | Sol-gel | MB and RhB | Visible |
[116] | LaFeO3 | Sol–gel, Microwave | Methyl orange and MB | Visible |
[117] | LaFeO3 | Microwave | MB | Visible |
[115] | Li-doped LaFeO3 | Sol-gel | MB and arcylon | UV-visible |
[118] | LaFeO3, Ca-doped LaFeO3 | Reverse microemulsion | MB | Visible |
[113] | LaFeO3, La2FeTiO6 | Sol–gel | p-Chlorophenol | Visible |
[123] | LaCoO3 | Surface-ion adsorption | MB, methyl orange and neutral red | UV |
[124] | SrTiO3/CeO2 | Dry (SrCO3, CeO2)-wet (sol-gel Ti(OC4H9)4) composition | Reactive black 5 | UV |
[125] | SrTiO3/CeO2 | Dry (SrCO3, CeO2)-wet (sol-gel Ti(OC4H9)4) composition | Direct Red 23 | UV |
[126] | BaBiO3 | Solid state, hydrothermal | RhB, water splitting | Visible |
[127] | KBiO3 | Solid phase heating | RhB, crystal violet, MB, phenol | Visible |
[128] | Bi2Fe4O9 | Hydrothermal method | phenol, aqueous ammonia | Visible |
[130] | LaMnO3–diamond | Sol-gel | Acid red C | Visible |
[131] | Au NP/ KNbO3 | Deposition/precipitation + thermal reduction | Sec-phenethyl alcohol | Visible |
[132] | S, C-co-doped SrTiO3 | Calcination | 2-Propanol | Visible |
[129] | BiFeO3 nanoparticles | Sol-gel | Methyl orange | UV-Visible |
[133] | LaCoO3 nanofibres | Electrospinning | RhB | UV |
[134] | PrFeO3 (nanotubes, nanofibers, nanoparticles) | Electrospinning, annealing | RhB | Visible |
[136] | Ag3PO4/LaCoO3 | Liquid deposition | Bisphenol | Visible |
[137] | LaFeO3/TiO2 | Two-step | MB | Fluorescent |
[138] | LaFeO3/TiO2 | Hydrothermal | Methyl orange | Visible |
[139] | CsPbBr3/TiO2 | Wet-impregnation | Benzyl Alcohol | Visible |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Cervantes, M.L.; Castillejos, E. Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts 2019, 9, 230. https://doi.org/10.3390/catal9030230
Rojas-Cervantes ML, Castillejos E. Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts. 2019; 9(3):230. https://doi.org/10.3390/catal9030230
Chicago/Turabian StyleRojas-Cervantes, María Luisa, and Eva Castillejos. 2019. "Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment" Catalysts 9, no. 3: 230. https://doi.org/10.3390/catal9030230
APA StyleRojas-Cervantes, M. L., & Castillejos, E. (2019). Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts, 9(3), 230. https://doi.org/10.3390/catal9030230