Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review
Abstract
:1. Introduction
2. Green Synthesis of Zeolites
2.1. Sustainability of Raw Materials for Zeolite Synthesis
2.2. Reducing/Avoiding Organic Templates for Zeolite Synthesis
2.3. Development of Facile Synthesis Methods
3. Green Synthesis of Hierarchical Zeolites
3.1. Green Synthesis of Hierarchical Zeolites via Mesoporous Templates
3.2. Green Synthesis of Hierarchical Zeolites without Mesoporous Templates
3.2.1. Intergrowth of Zeolite Nanocrystals
3.2.2. Steam-Assisted Crystallization (SAC) Method
3.2.3. Salt-Assisted Seed Induction Method
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Holm, M.S.; Taarning, E.; Egeblad, K.; Christensen, C.H. Catalysis with hierarchical zeolites. Catal. Today 2011, 168, 3–16. [Google Scholar] [CrossRef]
- Hartmann, M.; Machoke, A.G.; Schwieger, W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chem. Soc. Rev. 2016, 45, 3313–3330. [Google Scholar] [Green Version]
- Jia, L.Y.; Raad, M.; Hamieh, S.; Toufaily, J. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics. Green Chem. 2017, 19, 5442–5459. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, S.S.; Wang, H.; Pinnavaia, T.J.; Papapetrou, M.C.; Lappas, A.A.; Triantafyllidis, K.S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angew. Chem. Int. Ed. 2009, 48, 7645–7648. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Ryoo, R. The synthesis of a hierarchically porous BEA zeolite pseudomorphic crystallization. Chem. Commum. 2009, 20, 2845–2847. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Parmentier, T.E.; de Jong, K.P.; Zečević, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 2015, 44, 7234–7261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.C.; Rohling, R.; Filonenko, G.; Mezari, B.; Hofmann, J.P.; Asahina, S.; Hensen, E.J.M. Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. Chem. Commun. 2014, 50, 14658–14661. [Google Scholar] [Green Version]
- Verboekend, D.; Pérez-Ramírez, J. Towards a sustainable manufacture of hierarchical zeolites. ChemSusChem 2014, 7, 753–764. [Google Scholar] [PubMed]
- Ogura, M.; Shinomiya, S.Y.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chem. Lett. 2000, 29, 882–883. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Sun, J.; Miao, L.; Li, Q.; Yan, Y.; Zhao, D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J. Am. Chem. Soc. 2000, 122, 3530–3531. [Google Scholar] [CrossRef]
- Meng, X.J.; Xiao, F.S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. [Google Scholar] [CrossRef] [PubMed]
- Lehman, S.E.; Larsen, S.C. Zeolite and mesoporous silica nanomaterials: Greener syntheses, environmental applications and biological toxicity. Environ. Sci. Nano 2014, 1, 200–213. [Google Scholar] [CrossRef]
- Abdullahi, T.; Harun, Z.; Othman, M.H.D. A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv. Powder Technol. 2017, 28, 1827–1840. [Google Scholar] [CrossRef]
- Pan, F.; Lu, X.; Wang, Y.; Chen, S.; Yan, Y. Organic template-free synthesis of ZSM-5 zeolite from coal-series kaolinite. Mater. Lett. 2014, 115, 5–8. [Google Scholar] [CrossRef]
- Pan, F.; Lu, X.C.; Wang, Y.; Chen, S.W.; Wang, T.Z.; Yan, Y. Synthesis and crystallization kinetics of ZSM-5 without organic template from coal-series kaolinite. Microporous Mesoporous Mater. 2014, 184, 134–140. [Google Scholar]
- Li, X.; Li, B.; Xu, J.; Wang, Q.; Pang, X.; Gao, X.; Zhou, Z.; Piao, J. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material. Appl. Clay Sci. 2010, 50, 81–86. [Google Scholar] [CrossRef]
- Chaisena, A.; Rangsriwatananon, K. Synthesis of sodium zeolites from natural and modified diatomite. Mater. Lett. 2005, 59, 1474–1479. [Google Scholar] [CrossRef]
- Rangsriwatananon, K.; Chaisena, A.; Thongkasam, C. Thermal and acid treatment on natural raw diatomite influencing in synthesis of sodium zeolites. J. Porous Mater. 2008, 15, 499–505. [Google Scholar]
- Zhang, K.; Liu, Y.; Zhao, J.; Liu, C. Hierarchical porous ZSM-5 zeolite synthesized by in situ zeolitization and its coke deposition resistance in aromatization reaction. Chin. J. Chem. 2012, 30, 597–603. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.Q.; Zhao, J.C.; Liu, C.G. Zeolitization of Diatomite to Prepare Hierarchical Porous ZSM-5 Zeolite through Solid Phase in Situ Process. Non-Met. Mine 2011, 34, 1–5. [Google Scholar]
- Zhang, K.; Liu, Y.; Tian, S.; Zhao, E.; Zhang, J.; Liu, C. Preparation of bifunctional NiPb/ZnO-diatomite-ZSM-5 catalyst and its reactive adsorption desulfurization coupling aromatization performance in FCC gasoline upgrading process. Fuel 2013, 104, 201–207. [Google Scholar] [CrossRef]
- Jia, Y.; Han, W.; Xiong, G.; Yang, W. A method for diatomite zeolitization through steam-assisted crystallization with in-situ seed. Mater. Lett. 2008, 62, 2400–2403. [Google Scholar]
- Li, X.Y.; Jiang, Y.; Liu, X.Q.; Shi, L.Y.; Zhang, D.Y.; Sun, L.B. Direct synthesis of zeolites from a natural clay, attapulaite. ACS Sustain. Chem. Eng. 2017, 5, 6124–6230. [Google Scholar]
- Missengue, R.N.M.; Losch, P.; Musyoka, N.M.; Louis, B.; Pale, P.; Petrik, L.F. Conversion of South African Coal Fly Ash into High-Purity ZSM-5 Zeolite without Additional Source of Silica or Alumina and Its Application as a Methanol-to-Olefins Catalyst. Catalysts 2018, 8, 124. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.J.; Zhao, J.J.; Zhang, Z.H.; Wang, H.Q.; Zhou, S.; Wu, L.M. Synthesis of zeolite P1 from fly ash under solvent-free condition for ammonium removal from water. J. Clean. Prod. 2018, 202, 11–22. [Google Scholar]
- Zhang, C.Q.; Li, S.; Bao, S.C. Sustainable synthesis of ZSM-5 zeoltie from Rice Husk Ash without addition of solvents. Waste Biomass Valoriz. 2018, 1–11. [Google Scholar] [CrossRef]
- Mehmandoust, G.; Pourahmad, A. Preparation of ZSM-12 zeolite from RHS and Its Application for Synthesis of n-type ZnO Semiconductor Nanoparticles: A Green Chemistry Approach. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2213–2220. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Li, S.Q.; Bao, S.C. A facile and green method for the synthesis of hierarchical ZSM-5 zeolite aggregates from rice husk ash. Res. Chem. Intermed. 2018, 44, 3581–3595. [Google Scholar]
- Meng, X.J.; Wang, L.; Xiao, F.S. Chapter 11 Sustainable Routes for Synthesis of Zeolite Catalysts. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Sels, B., van de Voorde, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017. [Google Scholar]
- Jones, C.W.; Tsuji, K.; Takewaki, T.; Beck, L.W.; Davis, M.E. Tailoring molecular sieve properties during SDA removal via solvent extraction. Microporous Mesoporous Mater. 2001, 48, 57–64. [Google Scholar]
- Jones, C.W.; Hwang, S.J.; Okubo, T.; Davis, M.E. Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem. Mater. 2001, 13, 1041–1050. [Google Scholar] [CrossRef]
- Takewaki, T.; Beck, L.W.; Davis, M.R. Synthesis of CIT-6, a zincosilicate with the BEA topology. Top. Catal. 1999, 9, 35–42. [Google Scholar]
- Wang, J.Y.; Song, J.W.; Yin, C.Y.; Ji, Y.Y.; Zou, Y.C.; Xiao, F.S. Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporour Mesoporour Mater. 2009, 117, 561–569. [Google Scholar]
- Flanigen, E.M.; Grose, R.W. Phosphorus substitution in zeolite frameworks. In Proceedings of the Second International Conference on Molecular Sieve Zeolites, Worcester, MA, USA, 8–11 September 1970; American Chemical Society: Washington, DC, USA, 1970; pp. 71–94. [Google Scholar]
- Grose, R.W.; Flanigen, E.M. Novel Zeolite Compositions and Processes for Preparing and Using Same. U.S. Patent 4257885, 24 March 1981. [Google Scholar]
- Li, H.X.; Xiang, S.H.; Liu, S.Q.; Wu, D.M.; Liu, Y.T.; Zhang, X.S. “Direct Method” for the Synthesis of ZSM-5 Zeolite. Chinese Patent CN85100463, 3 April 1985. [Google Scholar]
- Song, J.; Dai, L.; Ji, Y.; Xiao, F.S. Organic template-free synthesis of aluminosilicate zeolite ECR-1. Chem. Mater. 2006, 18, 2775–2777. [Google Scholar] [CrossRef]
- Rubin, M.K.; Rosinski, E.J.; Plank, C.J. Hydrocarbon Conversion with Crystalline Zeolite ZSM-34. U.S. Patent 4116813, 26 September 1978. [Google Scholar]
- Wu, Z.; Song, J.; Ji, Y.; Ren, L.; Xiao, F.S. Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution. Chem. Mater. 2008, 20, 357–359. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Meng, X.; Xie, B.; Wang, L.; Ren, L.; Ma, S.; Xiao, F.S. Organotemplate-free syntheses of ZSM-34 zeolite and its heteroatom-substituted analogues with good catalytic performance. Chem. Mater. 2010, 22, 3099–3107. [Google Scholar] [CrossRef]
- Xie, B.; Song, J.; Ren, L.; Ji, Y.; Li, J.; Xiao, F.S. Organic template-free and fast route for synthesizing beta zeolite. Chem. Mater. 2008, 20, 4533–4535. [Google Scholar] [CrossRef]
- Sano, T.; Itakura, M.; Sadakane, M. High potential of interzeolite conversion method for zeolite synthesis. J. Jpn. Pet. Inst. 2013, 56, 183–197. [Google Scholar]
- Goel, S.; Zones, S.I.; Iglesia, E. Synthesis of zeolites via interzeolite transformations without organic structure-directing agents. Chem. Mater. 2015, 27, 2056–2066. [Google Scholar] [CrossRef]
- Sachse, A.; García-Martínez, J. Surfacant-Templating of Zeolites: From Design to Application. Chem. Mater. 2017, 29, 3827–3853. [Google Scholar]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef]
- Wragg, D.S.; Byrne, P.J.; Giriat, G.; Ouay, B.L.; Gyepes, R.; Harrison, A.; Whittaker, A.G.; Morris, R.E. In situ comparison of lonothermal kinetics under microwave and conventional heating. J. Phys. Chem. C 2009, 113, 20553–20558. [Google Scholar] [CrossRef]
- Pamham, E.R.; Morris, R.E. The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks. J. Am. Chem. Soc. 2006, 128, 2204–2205. [Google Scholar]
- Xu, W.; Dong, J.; Li, J.; Li, J.; Wu, F. A novel method for the preparation of zeolite ZSM-5. J. Chem. Soc. Chem. Commun. 1990, 21, 755–756. [Google Scholar] [CrossRef]
- Li, H.Y.; Dou, T.; Gong, Y.J.; Tian, R. Synthesis of ZSM-5 zeolite with special morphology in extra concentrated system and its crystallization mechanism study. Pet. Process. Petrochem. 2010, 41, 40–46. [Google Scholar]
- Ji, Y.Y.; Zhang, B.; Zhang, W.; Zhao, B.; Li, H.B.; Wang, D.M.; Li, Y. High-efficient synthesis of zeolite LTA via a wet-gel crystallization route. Chem. Res. Chin. Univ. 2017, 33, 520–524. [Google Scholar] [CrossRef]
- Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F.S. Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 2012, 134, 15173–15176. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F.S. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew. Chem. Int. Ed. 2013, 52, 9172–9175. [Google Scholar]
- Wu, Q.M.; Meng, X.J.; Gao, X.H.; Xiao, F.S. Solvent-Free Synthesis of Zeolites: Mechanism and Utility. Acc. Chem. Res. 2018, 51, 1396–1403. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wu, Q.M.; Meng, X.J.; Xiao, F.S. Insights into the organotemplate-free synthesis of zeolite catalysts. Engineering 2017, 3, 567–574. [Google Scholar] [CrossRef]
- Wu, Q.M.; Liu, X.L.; Zhu, L.F.; Meng, X.J.; Deng, F.; Fan, F.T.; Feng, Z.C.; Li, C.; Maurer, S.; Feyen, M.; et al. Solvent-free synthesis of ITQ-12, ITQ-13, and ITQ-17 zeolites. Chin. J. Chem. 2017, 35, 572–576. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.H.; Bai, L.; Chang, N.; Nan, G.Z.; Hu, D.; Zhang, Y.F.; Wei, W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Appl. Catal. A 2017, 531, 203–311. [Google Scholar]
- Petkowicz, D.I.; Canal, S.; Finger, P.H.; Mignoni, M.L.; dos Santos, J.H.Z. Synthesis of hybrid zeolites using a solvent-free method in the presence of different organosilanes. Microporous Mesoporous Mater. 2017, 241, 98–106. [Google Scholar]
- Xiao, Y.C.; Sheng, N.; Chu, Y.Y.; Wang, Y.Q.; Wu, Q.M.; Liu, X.L.; Deng, F.; Meng, X.J.; Feng, Z.C. Mechanism on solvent-free crystallization of NaA zeolite. Microporous Mesoporous Mater. 2017, 237, 201–209. [Google Scholar] [CrossRef]
- Cui, Y.C.; Yan, Z.; Li, M.L.; Zhu, J.; Zhu, L.F.; Yao, H.; Cao, X.B. Solvent-free synthesis of all silica beta zeolite in the presence of tetraethylammonium bromide. Crystals 2018, 8, 73. [Google Scholar]
- Cheng, S.L.; Mazonde, B.; Zhang, G.N.; Javed, M.; Dai, P.; Cao, Y.N.; Tu, S.S.; Wu, J.Y.; Lu, C.X.; Xing, C.; et al. Co-based MOR/ZSM-5 composite zeolites over a solvent-free synthesis strategy for improving gasoline selectivity. Fuel 2018, 223, 354–359. [Google Scholar] [CrossRef]
- Bian, C.Q.; Chen, F.; Zhang, L.; Zhang, W.P.; Meng, X.J.; Maurer, S.; Dai, D.; Parvulescu, A.N.; Muller, U.; Xiao, F.S. Enhance synthetic efficiency of CHA zeolite crystallized at higher temperature. Catal. Today 2018, 316, 31–36. [Google Scholar]
- Chu, P.; Dwyer, F.G.; Vartuli, X. Crystallization Method Employing Microwave Radiation. U.S. Patent 4778666, 10 October 1988. [Google Scholar]
- Girnus, I.; Jancke, K.; Vetter, R.; Richter-Mendau, J.; Caro, J. Large AlPO4-5 crystals by microwave heating. Zeolites 1995, 15, 33–39. [Google Scholar]
- Fang, M.; Du, H.; Xu, W.; Meng, X.; Pang, W. Microwave preparation of molecular sieve AlPO4-5 with nanometer sizes. Microporous Mater. 1997, 9, 59–61. [Google Scholar] [CrossRef]
- Chen, X.; Yan, W.; Shen, W.; Yu, J.; Cao, X.; Xu, R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Microporous Mesoporous Mater. 2007, 104, 296–304. [Google Scholar]
- Majano, S.; Gerardo, J.; Delmotte, L.; Valtchev, V.; Mintova, S. Al-rich zeolite Beta by seeding in the absence of organic template. Chem. Mater. 2009, 21, 4184–4191. [Google Scholar]
- Li, Y.; Yang, W. Microwave synthesis of zeolite membranes: A review. J. Membr. Sci. 2008, 316, 3–17. [Google Scholar] [CrossRef]
- Reinoso, D.; Adrover, M.; Pedernera, M. Green synthesis of nanocrystalline faujasite zeolite. Ultrason. Sonochem. 2018, 42, 303–309. [Google Scholar]
- Liu, Z.D.; Okabe, K.; Anand, C.; Yonezawa, Y.; Zhu, J.; Yamada, H.; Endo, A.; Yanaba, Y.; Yoshikawa, T.; Ohara, K.; et al. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds. Proc. Natl. Acad. Sci. USA 2016, 113, 14267–14271. [Google Scholar] [PubMed] [Green Version]
- Zhu, J.; Liu, Z.D.; Endo, A.; Yanaba, Y.; Yoshikawa, T.; Wakihara, T.; Okubo, T. Ultrafast, OSDA-free synthesis of mordenite zeolite. CrysEngComm 2017, 19, 632–640. [Google Scholar]
- Zhu, J.; Liu, Z.; Sukenaga, S.; Ando, M.; Shibata, H.; Okubo, T.; Wakihara, T. Ultrafast synthesis of *BEA zeolite without the aid of aging pretreatment. Microporous Mesoporous Mater. 2018, 248, 1–8. [Google Scholar]
- Zhang, K.; Ostraat, M.L. Innovations in hierarchical zeolite synthesis. Catal. Today 2016, 264, 3–15. [Google Scholar] [CrossRef]
- Song, Y.; Hua, Z.; Zhu, Y.; Zhou, J.; Zhou, X.; Liu, Z.; Shi, J. Solvent-free liquid phase tert-butylation of phenol over hierarchical ZSM-5 zeolites for the efficient production of 2,4-ditertbutylphenol. J. Mater. Chem. 2012, 22, 3327–3329. [Google Scholar]
- Zhou, J.; Hua, Z.; Cui, X.; Ye, Z.; Cui, F.; Shi, J. Hierarchical mesoporous TS-1 zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol. Chem. Commun. 2010, 46, 4994–4996. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hua, Z.; Liu, Z.; Wu, W.; Zhu, Y.; Shi, J. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal. 2011, 1, 287–291. [Google Scholar] [CrossRef]
- Machoke, A.G.; Beltrán, A.M.; Inayat, A.; Winter, B.; Weissenberger, T.; Kruse, N.; Guttel, R.; Spiecker, E.; Schwieger, W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Adv. Mater. 2015, 27, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hua, Z.; Zhu, Y.; Zhou, X.; Wu, W.; Zhang, L.; Shi, J. An in situ carbonaceous mesopore template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization. Chem. Asian J. 2012, 7, 2772–2776. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, Z.; Wang, Y.; Kong, D.; Yuan, X.; Xie, Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within Silicalite-1 crystal. Chem. Mater. 2008, 20, 1134–1139. [Google Scholar] [CrossRef]
- Pal, N.; Bhaumik, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci. 2013, 189–190, 21–41. [Google Scholar]
- Xiao, F.S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D.S.; Schologl, R.; Yokoi, T.; et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew. Chem. Int. Ed. 2006, 118, 3162–3165. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Zhu, L.; Rigutto, M.; Made, A.; Yang, C.; Pan, S.; Wang, L.; Zhu, L.; Jin, Y.; et al. Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. J. Am. Chem. Soc. 2014, 136, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhang, X.; Li, Y.; Li, H.; Wu, W.; Cui, Y.; Chen, Q.; Li, L.; Gu, J.; Zhao, W.; et al. A simple route to synthesize mesoporous ZSM-5 templated by ammonium-modified chitosan. Chem. Eur. J. 2012, 18, 16549–16555. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, S.; Chen, J.; Wei, Y.; Li, J.; Fan, D.; Yu, Z.; Qi, Y.; He, Y.; Xu, S.; et al. Synthesis of mesoporous ZSM-5 catalysts using different mesoporous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Adv. 2014, 4, 21479–21491. [Google Scholar]
- Karlsson, A.; Stocker, M.; Schmidt, R. Composites of micro- and mesoporous materials: Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 1999, 27, 181–192. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Rodríguez, J.M.; Peral, Á. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chem. Mater. 2006, 18, 2462–2464. [Google Scholar] [CrossRef]
- Miyake, K.; Hirota, Y.; Uchida, Y.; Nishiyama, N. Synthesis of mesoporous MFI zeolite using PVA as a secondary template. J. Porous Mater. 2016, 23, 1395–1399. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Kong, D.; Wang, Y.; Xie, Z. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. J. Phys. Chem. C 2008, 112, 17257–17264. [Google Scholar] [CrossRef]
- Li, W.; Ma, T.; Zhang, Y.; Gong, Y.; Wu, Z.; Dou, T. Facile control of inter-crystalline porosity in the synthesis of size-controlled mesoporous MFI zeolites via in-situ converting silica gel into zeolite nanocrystals for catalytic cracking. CrystEngComm 2015, 17, 5680–5689. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; AI Wahedi, Y.; Bhan, A.; AI Hashimi, S.; Terasaki, O.; et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Moller, K.; Yilmaz, B.; Muller, U.; Bein, T. Nanofusion: Mesoporous zeolites made easy. Chem. Eur. J. 2012, 18, 7671–7674. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Luo, C.; Liu, J.; Chen, B. Direct synthesis of hierarchical zeolites with oriented nanocrystals without adding extra templates. RSC Adv. 2013, 3, 6295–6298. [Google Scholar] [CrossRef]
- Luo, W.; Yang, X.Y.; Wang, Z.R.; Huang, W.F.; Chen, J.Y.; Jiang, W.; Wang, L.J.; Cheng, X.W.; Deng, Y.H.; Zhao, D.Y. Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous Mesoporous Mater. 2017, 243, 112–118. [Google Scholar] [CrossRef]
- Zhang, C.S.; Wu, Q.M.; Lei, C.; Pan, S.X.; Bian, C.Q.; Wang, L.; Meng, X.J.; Xiao, F.S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction. Ind. Eng. Chem. Res. 2017, 56, 1450–1460. [Google Scholar] [CrossRef]
- Bai, L.; Liu, C.; Li, M.; Wang, Y.H.; Nan, G.Z.; Hu, D.; Zhang, Y.F.; Zeng, G.F.; Wei, W.; Sun, Y. Synthesis of all-silica DDR zeolite in an environment-friendly way. Microporous Mesoporous Mater. 2017, 239, 34–39. [Google Scholar] [CrossRef]
- Yue, Y.Y.; Gu, L.L.; Zhou, Y.N.; Liu, H.Y.; Yuan, P.; Zhu, H.B.; Bai, Z.; Bao, X.J. Template-free synthesis and catalytic applications of microporous and hierarchical ZSM-5 zeoltie from natural aluminosilicate minerals. Ind. Eng. Chem. Res. 2017, 56, 10069–10077. [Google Scholar] [CrossRef]
- Kovo, A.S.; Opuama, E.; Edoga, M.O.; Abdulkadir, M.; Isah, A.G.; Mohammed, I.A. On the synthesis of zeolitey Y/ZSM-5 composite via novel technique. Chem. Eng. Sci. 2016, 4, 1–4. [Google Scholar]
- Mintova, S.; Gilson, J.P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693–6703. [Google Scholar] [CrossRef]
- Ng, E.P.; Delmotte, L.; Mintova, S. Environmentally benign synthesis of nanosized aluminophosphate enhanced by microwave heating. Green Chem. 2008, 10, 1043–1048. [Google Scholar] [CrossRef]
- Van Heyden, H.; Mintova, S.; Bein, T. AlPO-18 nanocrystals synthesized under microwave irradiation. J. Mater. Chem. 2006, 16, 514–518. [Google Scholar] [CrossRef]
- Wakihara, T.; Tatami, J. Top-down Tuning of Nanosized Zeolites by Bead-milling and Recrystallization. J. Jpn. Pet. Inst. 2013, 56, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Na, K.; Choi, M.; Ryoo, R. Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. J. Mater. Chem. 2009, 19, 6713–6719. [Google Scholar] [CrossRef]
- Kore, R.; Satpati, B.; Srivastava, R. Synthesis of dicationic ionic liquids and their application in the preparation of hierarchical zeolite Beta. Chem. Eur. J. 2011, 17, 14360–14365. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tian, G.; Chen, L.H.; Li, Y.; Rooke, J.C.; Wei, Y.X.; Liu, Z.M.; Deng, Z.; Tendeloo, G.V.; Su, B.L. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance. Chemistry 2015, 17, 14987–14995. [Google Scholar] [CrossRef] [PubMed]
- Matsukata, M.; Osaki, T.; Ogura, M.; Kikuchi, E. Crystallization behavior of zeolite Beta during steam-assisted crystallization of dry gel. Microporous Mesoporous Mater. 2002, 56, 1–10. [Google Scholar] [CrossRef]
- Zhou, J.; Hua, Z.; Zhao, J.; Gao, Z.; Zeng, S.; Shi, J. A micro/mesoporous aluminosilicate: Key factors affecting framework crystallization during steam-assisted synthesis and its catalytic property. J. Mater. Chem. 2010, 20, 6764–6771. [Google Scholar] [CrossRef]
- Moller, K.; Yilmaz, B.; Jacubinas, R.M.; Muller, U.; Bein, T. One-step synthesis of hierarchical zeolite Beta via network formation of uniform nanocrystals. J. Am. Chem. Soc. 2011, 133, 5284–5295. [Google Scholar] [CrossRef]
- Zhang, J.L.; Cao, P.; Yan, H.Y.; Wu, Z.J.; Dou, T. Synthesis of hierarchical zeolite Beta with low organic template content via the steam-assisted conversion method. Chem. Eng. J. 2016, 291, 82–93. [Google Scholar] [CrossRef]
- Jia, Y.M.; Wang, J.W.; Zhang, K.; Chen, G.L.; Yang, Y.F.; Liu, S.B.; Ding, C.M.; Meng, Y.Y.; Liu, P. Hierarchical ZSM-5 zeoltie synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Technol. 2018, 328, 415–429. [Google Scholar] [CrossRef]
- Zhang, H.; Song, K.; Wang, L.; Zhang, H.; Zhang, Y.; Tang, Y. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem 2013, 5, 2874–2878. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Shi, B.; Ren, J.; Lu, G. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater. 2009, 117, 104–110. [Google Scholar] [CrossRef]
- Tao, Y.S.; Kanoh, H.; Kaneko, K. ZSM-5 monolith of uniform mesoporous channels. J. Am. Chem. Soc. 2003, 125, 6044–6045. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.L.; Shaikh, S.; Vittenet, J.R.; Wang, J.J.; Liu, Z.H.; Bhatte, K.D.; Ali, O.; Xu, W.; Osorio, I.; Saih, Y.; et al. Fine Tuning the Diffusion Length in Hierarchical ZSM-5 To Maximize the Yield of Propylene in Catalytic Cracking of Hydrocarbons. ACS Sustain. Chem. Eng. 2018, 6, 15832–15840. [Google Scholar] [CrossRef]
- Li, H.; Jin, J.; Wu, W.; Chen, C.C.; Li, L.; Li, Y.S.; Zhao, W.R.; Gu, J.L.; Chen, G.R.; Shi, J.L. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. J. Mater. Chem. 2011, 21, 19395–19401. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef]
Green Strategy | Sustainability of Raw Materials | Avoiding or Reducing Organic Templates | Facile Synthesis Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Nature minerals | Rich hush ash | Low toxic template | Recycling template | Template-free by modulating initial gel | Template-free using zeolite seeds | Interzeolite conversion | Ionothermal synthesis | Solid-state or quasi-solid-state synthesis | Microwave-assisted synthesis | Continuous-flow synthesis |
Zeolite type | MFI, BEA, FAU, MWW, ATP, MOR, TON [14,15,16,17,18,19,20,21,22,23] | GIS, MFI, MTW [25,26,27,28] | AFI [33] | MFI, BEA [30] | MFI, EON [36,37] | BEA, MFI, MOR, SZR [41,66] | BEA, CHA, LEV, RUT MFI [42,43,44] | AEI, SOD [47] | (MFI, MOR, BEA, FAU, LTA, CHA, ITQ [49,50,51,52,53,54,55,56,57,58,59,60,61] | AFI, LTA, BEA, FAU, MFI [63,65] | MOR, MFI, BEA [69,70,71] |
Calcination for organic removal | Yes | Yes | Yes | No | No | No | No | Yes | Yes | Yes | Yes |
Water Consumption (mL gzeolite−1) 1 | 10.65 (ZSM-5) [14] | -- | 2.3 [33] | 134 [30] | 8.9 [36] | 4.3 [41] | 65–90 [42] | 0 | ~0 | 16.8 [63,65] | ~8 |
Product yield based on Si/Al source 2 | 85% [14], 96% [23] | General | Genera | General | General | General | 46‒76% [42] | General | High (93–95%) [50] | General | General |
Methods | Si/Al | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Mesopore Pore Size (nm) | Catalytic Reaction | References | ||||
---|---|---|---|---|---|---|---|---|---|---|
SBET | Sext | Smicro | Vtotal | Vmicro | Vmeso | |||||
CaCO3 as hard template | ∞(Silicate-1) | 445 | 215 | 230 | 0.40 | 0.10 | 0.30 | 50–100 | -- | [78] |
Dual-function template | 30 | 602 | 433 | 179 | 0.56 | 0.057 | 0.50- | 7–14 | Hydrocarbon cracking | [112] |
Intergrowth of zeolite nanocrystal | 50 | ~354 | ~93 | ~261 | 0.26 | 0.13 | 0.13 | 7–10 | n-hexane cracking | [88] |
SAC method | 20 | 424 | 137 | 287 | ~0.28 | ~0.13 | ~0.15 | 11–15 | -- | [110] |
25 | ~385 | ~52 | ~333 | ~0.23 | ~0.13 | ~0.1 | -- | Methanol aromatization | [108] | |
Salt-assisted seed induction method | 34 | 481 | 87 | 394 | 0.31 | 0.11 | 0.20 | 10–40 | O-xylene isomerization | [109] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Wu, Z.; Yip, A.C.K. Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts 2019, 9, 274. https://doi.org/10.3390/catal9030274
Pan T, Wu Z, Yip ACK. Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts. 2019; 9(3):274. https://doi.org/10.3390/catal9030274
Chicago/Turabian StylePan, Tao, Zhijie Wu, and Alex C. K. Yip. 2019. "Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review" Catalysts 9, no. 3: 274. https://doi.org/10.3390/catal9030274
APA StylePan, T., Wu, Z., & Yip, A. C. K. (2019). Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts, 9(3), 274. https://doi.org/10.3390/catal9030274