Mechanically-Induced Catalyzation of MgH2 Powders with Zr2Ni-Ball Milling Media
Abstract
:1. Introduction
1.1. Mechanically-Induced Catalyzation (MIC) of Mg/MgH2 Powders
1.2. Ball-Milling Media as a Source of Catalysts
2. Results and Discussion
2.1. Hydrogenation Kinetics of MgH2 during the RBM Process
Effect of Milling Media (MM)
2.2. Crystal Structure
2.3. Local Structure and Compositional Analysis
2.4. Thermal Analysis
2.5. De/Rehydrogenation Behaviors
2.5.1. Pressure-Composition-Temperature (PCT)
2.5.2. Hydrogenation Kinetics
2.5.3. Dehydrogenation Kinetics
2.5.4. Cyclability and Performance
3. Materials and Methods
3.1. Fabrication of Zr2Ni Ball Milling Media
3.2. Preparation of MgH2 Powders Catalyzed with Zr2Ni Particles
3.3. Powder Characterizations
3.3.1. XRD, High Resolution Transmission Electron Microscope (HRTEM), STEM/Energy-Dispersive X-ray spectroscopy (EDS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
3.3.2. SEM
3.3.3. Normal DSC
3.3.4. De/Rehydrogenation Behaviors
4. Conclusions
- In contrast to traditional doping and milling Mg powders with Zr2Ni powders using tool steel balls, our proposed in-situ gradual doping Mg was successfully achieved upon using Zr2Ni-balls milling media ball milling. This new catalyzation process has shown mutually beneficial for overcoming the agglomeration of catalytic agent in Mg matrix.
- During reactive ball milling process, corroded Zr2Ni fine particles from Zr2Ni balls, were introduced to Mg matrix and led to accelerate the mechanically induced gas–solid-reaction. These hard particles played a vital micro milling-media role for disintegrating Mg/MgH2 powders to nanoscale particles after only 50 h of milling.
- Homogeneous distribution of Zr2Ni in a MgH2 matrix had the desired effect on decreasing the decomposition temperature of MgH2 to 519 K with a low value of apparent activation energy of decomposition (91.51 kJ/mol).
- Drastic disintegration of MgH2 particles conducted by Zr2Ni particles led to a decrease in the hydrogen diffusion distance and facilitated excellent hydrogenation properties of Mg. This was realized by the powder capability to react with hydrogen at very low (50 to 125 °C) and moderate (125 to 150 °C) temperatures. The hydrogen storage capacity of the powders measured at 50 °C and 150 °C were 4.23 wt% and 5.32 wt%, respectively. At 200 °C, however, storage capacity reached to 6.11 wt%.
- MgH2/5 wt% Zr2Ni nanocomposite powders obtained after 50 h of milling with Zr2Ni balls possessed superior hydrogenation kinetics at 200 °C, characterized by the short time (425 s) required to absorb 6.2 wt% H2. This came in contrast with Mg sample doped with 5 wt% Zr2Ni powders and milled for 50 h, using tool steel balls, which absorbed 6.2 wt% H2 at 350 °C in 36085 s.
- Likewise the excellent characteristics of hydrogenation, the milled samples with Zr2Ni revealed good dehydrogenation kinetics, indexed by a short time needed (700 s) to release its full storage capacity (6.2 wt% H2).
- The powders also showed excellent cyclability for achieving a continuous 646 cycles in 985.5 h without severe degradation.
- One merit of this proposed catalyzation approach is the ability of Zr2Ni balls to be used several times for mechanical doping of MgH2 and maybe other metal hydride systems.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calka, A. Formation of titanium and zirconium nitrides by mechanical alloying. Appl. Phys. Lett. 1991, 7, 1568–1570. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Sumiyama, K.; Aoki, K.; Suzuki, K. Reactive ball mill for solid state synthesis of metal nitrides powder. Mater. Sci. Forum 1992, 88, 801–808. [Google Scholar] [CrossRef]
- Montone, A.; Aurora, A.; Gattia, D.M.; Antisari, M.V. Microstructural and Kinetic Evolution of Fe Doped MgH2 during H2 Cycling. Catalysts 2012, 2, 400–411. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Shaz, M.A.; Srivastava, O.N. Synthesis of MgH2 using autocatalytic effect of MgH2. Int. J. Hydrogen Energy 2019, 44, 6738–6747. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Banyan, M.; Al-Ajmi, F. Synergistic effect of new ZrNi5/Nb2O5 catalytic agent on storage behavior of nanocrystalline MgH2 powders. Catalysts 2019, 9, 306. [Google Scholar] [CrossRef]
- Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellosta von Colbe, J.M. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Bellosta von Colbe, J.M.; Ares, J.-R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Aldakheel, F.; Alkandary, A.; Behbehani, M.; Al-Saidi, M. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Sci. Rep. 2018, 7, 13296. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M.A. Review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 411, 12108–12126. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci.-Mater. 2017, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- El-Eskandarany, M.S. Recent developments on fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in Kuwait Institute for Scientific Research. RSC Adv. 2019, 9, 9907–9930. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Alkandary, A.; Aldakheel, F.; Al-Saidi, M.; Al-Ajmi, F.; Banyan, M. Performance and fuel cell applications of reacted ball-milled MgH2/5.3 wt% TiH2 nanocomposite powders. RSC Adv. 2018, 8, 38175–38185. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Al-Halaili, B. Nanocrystalline β-γ-β cyclic phase transformation in reacted ball milled MgH2 powders. Int. J. Hydrogen Energy 2014, 39, 12727–12740. [Google Scholar] [CrossRef]
- Amira, S.; Huot, J. Effect of cold rolling on hydrogen sorption properties of die-cast and as-cast magnesium alloys. J. Alloys Compd. 2012, 520, 287–294. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Banyan, M.; Al-Ajmi, F. Discovering a new MgH2 metastable phase. RSC Adv. 2018, 8, 32003–32008. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Pressure-induced structural transitions in MgH2. Phys. Rev. Lett. 2002, 89, 175506–175509. [Google Scholar] [CrossRef]
- Jorge, A.M.; de Lima, G.F.; Triques, M.R.M.; Botta, W.J.; Langdon, T.G. Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int. J. Hydrogen Energy 2014, 39, 3810–3821. [Google Scholar] [CrossRef]
- Moretto, P.; Zlotea, C.; Dolci, F.; Amieiro, A.; Bobet, J.L.; Borgschulte, A.; Chandra, D.; Enoki, H.; De Rango, P.; Fruchart, D.; et al. A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material. Int. J. Hydrogen Energy 2013, 38, 6704–6717. [Google Scholar] [CrossRef]
- Shang, C.X.; Bououdina, M.; Song, Y.; Guo, Z.X. Mechanical alloying and electronic simulations of (MgH2+M) systems (M = Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 2004, 29, 73–80. [Google Scholar] [CrossRef]
- Yamada, T.; Yin, J.; Tanaka, K. Hydrogen storage properties and phase structures of Mg-rich Mg-Pd, Mg-Nd and Mg-Pd-Nd alloys. Mater. Trans. 2001, 42, 2415–2421. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.; Ren, C.; Li, J.; Lu, J. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J. Phys. Chem. C 2014, 118, 11526–11535. [Google Scholar] [CrossRef]
- Xiong, Y.; Ba, J.; Qing, W.; Jing, W. Hydrogen storage properties of nanocrystalline Mg2Ni based alloys prepared by ball-milling. J. Plasma Fusion Res. Ser. 2013, 10, 94–97. [Google Scholar]
- El-Eskandarany, M.S.; Al-Matrouk, H.; Shaban, E.; Al-Duweesh, A. Effect of mechanically-induced solid-state doping time on the morphology and hydrogenation cyclability of MgH2/7Mn3.6Ti2.4 nanocomposite powders. Int. J. Hydrogen Energy 2015, 40, 10139–10149. [Google Scholar] [CrossRef]
- Ma, T.; Isobe, S.; Wang, Y.; Hashimoto, N.; Ohnuki, S. Catalytic Effect of Nb2O5 in MgH2-Nb2O5 Ball-Milled Composites. Catalysts 2012, 2, 344–351. [Google Scholar] [CrossRef]
- Ares-Fernández, J.-R.; Aguey-Zinsou, K.-F. Superior MgH2 Kinetics with MgO Addition: A Tribological Effect. Catalysts 2012, 2, 330–343. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Al-Shemmiri, A. Integrated Ni/Nb2O5 nanocatalytic agent dose for improving the hydrogenation/dehydrogenation kinetics of reacted ball milled MgH2 powders. Int. J. Hydrogen Energy 2014, 39, 21097–21106. [Google Scholar] [CrossRef]
- Ranjbara, A.; Guoa, Z.P.; Yua, X.B.; Wexler, D.; Calka, A.; Kimd, C.J.; Liu, H.K. Hydrogen storage properties of MgH2–SiC composites. Mater. Chem. Phys. 2009, 114, 168–172. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide System Prepared by Reactive Ball Milling. Materials 2015, 8, 6880–6892. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2. Sci. Rep. 2016, 6, 26936. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Metallic glassy Ti2Ni grain-growth inhibitor powder for enhancing the hydrogenation / dehydrogenation kinetics of MgH2. RSC Adv. 2019, 9, 1036. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Saeed, M.; Al-Nasrallah, E.; Al-Ajmi, F.; Banyan, M. Effect of LaNi3 Amorphous Alloy Nanopowders on the Performance and Hydrogen Storage Properties of MgH2. Energies 2019, 12, 1005. [Google Scholar] [CrossRef]
- Ismail, M. Effect of LaCl3 addition on the hydrogen storage properties of MgH2. Energy 2015, 79, 177–182. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, C.; Lai, Q.; Liu, W.; Wang, D.-W.; Francois, K.; Zinsou, A. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198. [Google Scholar] [CrossRef]
- Xia, G.; Tan, Y.; Chen, X.; Sun, D.; Guo, Z.; Liu, H.; Ouyang, L.; Zhu, M.; Yu, X. Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene. Adv. Mater. 2015, 27, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Tan, Y.; Wu, F.; Fang, F.; Sun, D.; Guo, Z.; Huang, Z.; Yu, X. Graphene-wrapped reversible reaction for advanced hydrogen storage. Nano Energy 2016, 26, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xia, G.; Zhang, J.; Sun, D.; Zaiping, G.; Yu, X. Graphene-Tailored Thermodynamics and Kinetics to Fabricate Metal Borohydride Nanoparticles with High Purity and Enhanced Reversibility. Adv. Energy Mater. 2018, 8, 1702975. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Ali, N.; Aldakheel, F.; Alkandary, A. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles. Sci. Rep. 2016, 6, 37335. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Ali, N.; Aldakheel, F.; Alkandary, A. Method of Synthesizing MgH2/Ni Nanocomposites. US Patent 9,828,245 B1, 28 November 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Eskandarany, M.S.; Al-Ajmi, F.; Banyan, M. Mechanically-Induced Catalyzation of MgH2 Powders with Zr2Ni-Ball Milling Media. Catalysts 2019, 9, 382. https://doi.org/10.3390/catal9040382
El-Eskandarany MS, Al-Ajmi F, Banyan M. Mechanically-Induced Catalyzation of MgH2 Powders with Zr2Ni-Ball Milling Media. Catalysts. 2019; 9(4):382. https://doi.org/10.3390/catal9040382
Chicago/Turabian StyleEl-Eskandarany, M. Sherif, Fahad Al-Ajmi, and Mohammad Banyan. 2019. "Mechanically-Induced Catalyzation of MgH2 Powders with Zr2Ni-Ball Milling Media" Catalysts 9, no. 4: 382. https://doi.org/10.3390/catal9040382
APA StyleEl-Eskandarany, M. S., Al-Ajmi, F., & Banyan, M. (2019). Mechanically-Induced Catalyzation of MgH2 Powders with Zr2Ni-Ball Milling Media. Catalysts, 9(4), 382. https://doi.org/10.3390/catal9040382