Heterogeneous Gold Catalysis: From Discovery to Applications
Abstract
:1. Introduction
2. Synthesis and Stability of Gold Catalysts
2.1. Synthesis of Gold Catalysts
2.1.1. Deposition-Precipitation Method
2.1.2. Co-precipitation Method
2.1.3. Impregnation Method
2.1.4. Reduction-Deposition Method
2.2. Stability of Gold Catalysts
3. Factors Affecting the Catalytic Activity of Gold Catalysts
3.1. Effect of Gold Particle Size and Shape
3.2. Effect of Gold Preparation Method
3.3. Effect of the Nature of Support
3.4. Effect of Gold-Support Interaction
3.5. Effect of Gold Oxidation State
4. Characterization Methods of Gold Catalysts
5. Gold Catalysis in the Liquid Phase Application
5.1. Oxidation of Alcohols to Benzaldehyde
5.2. Oxidation of Cyclohexane to Adipic Acid
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sennewald, K.; Vogt, W.; Glaser, H. Process for the preparation of vinyl acetate. Patent DE1244766B, 20 July 1967. [Google Scholar]
- Bond, G.C.; Sermon, P.A. Gold catalysts for olefin hydrogenation. Gold Bull. 1973, 6, 102–105. [Google Scholar] [CrossRef]
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J. Reactivation of a supported gold catalyst for acetylene hydrochlorination. J. Chem. Soc. Chem. Commun. 1988, 71–72. [Google Scholar] [CrossRef]
- Prati, L.; Rossi, M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 1988, 176, 552–560. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.E.; Landon, P.; Carley, A.F.; Herzing, A.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. J. Catal. 2005, 236, 69–79. [Google Scholar]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Shaikhutdinov, S.K.; Freund, H.-J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Brust, M.; Schmidbaur, H. Gold–An introductory perspective. Chem. Soc. Rev. 2008, 37, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Yasu-eda, T.; Se-ike, R.; Ikenaga, N.; Miyake, T.; Suzuki, T. Palladium-loaded oxidized diamond catalysis for the selective oxidation of alcohols. J. Mol. Catal. A Chem. 2009, 306, 136–142. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095. [Google Scholar] [CrossRef]
- Gutiérrez, L.-F.; Hamoudi, S.; Belkacemi, K. Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica. Appl. Catal. A Gen. 2011, 402, 94–103. [Google Scholar] [CrossRef]
- Centeno, M.; Ramírez Reina, T.; Ivanova, S.; Laguna, O.; Odriozola, J. Au/CeO2 catalysts: Structure and CO oxidation activity. Catalysts 2016, 6, 158. [Google Scholar] [CrossRef]
- Saavedra, J.; Pursell, C.J.; Chandler, B.D.; Saavedra, J. CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: Evidence for a common water-assisted mechanism. J. Am. Chem. Soc. 2018, 140, 3712–3723. [Google Scholar] [CrossRef]
- Megías-Sayago, C.; Santos, J.L.; Ammari, F.; Chenouf, M.; Odriozola, J.A. Influence of gold particle size in Au/C catalysts for base-free oxidation of glucose. Catal. Today 2018, 306, 183–190. [Google Scholar] [CrossRef]
- Hutchings, G.J. Heterogeneous gold catalysis. ACS Cent. Sci. 2018, 4, 1095–1101. [Google Scholar] [CrossRef]
- Claus, P. Heterogeneously catalysed hydrogenation using gold catalysts. Appl. Catal. A Gen. 2005, 291, 222–229. [Google Scholar] [CrossRef]
- Peng, S.; Sun, X.; Sun, L.; Zhang, M.; Zheng, Y.; Su, H.; Qi, C. Selective Hydrogenation of acetylene over gold nanoparticles supported on CeO2 pretreated under different atmospheres. Catal. Lett. 2019, 149, 465–472. [Google Scholar] [CrossRef]
- Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift. Catal. Lett. 2001, 77, 87–95. [Google Scholar] [CrossRef]
- Flytzani-Stephanopoulos, M.; Fu, Q.; Saltsburg, H. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938. [Google Scholar]
- Barakat, T.; Rooke, J.C.; Genty, E.; Cousin, R.; Siffert, S.; Su, B.-L. Gold catalysts in environmental remediation and water-gas shift technologies. Energy Environ. Sci. 2013, 6, 371. [Google Scholar] [CrossRef]
- Conte, M.; Carley, A.F.; Heirene, C.; Willock, D.J.; Johnston, P.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. J. Catal. 2007, 250, 231–239. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J.; Adams, M.D.; Friedl, J.; Wagner, F.E. Hydrochlorination of acetylene using gold catalysts—A study of catalyst deactivation. J. Catal. 1991, 128, 366–377. [Google Scholar] [CrossRef]
- Akram, M.O.; Banerjee, S.; Saswade, S.S.; Bedi, V.; Patil, N.T. Oxidant-free oxidative gold catalysis: The new paradigm in cross-coupling reactions. Chem. Commun. 2018, 54, 11069–11083. [Google Scholar] [CrossRef]
- Carrettin, S.; Guzman, J.; Corma, A. Supported gold catalyzes the homocoupling of phenylboronic acid with high conversion and selectivity. Angew. Chem. Int. Ed. 2005, 44, 2242–2245. [Google Scholar] [CrossRef]
- Gorodetskii, V.; Lauterbach, J.; Rotermund, H.H.; Block, J.H.; Ertl, G. Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction-diffusion waves. Nature 1994, 370, 276–279. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Salim, C.; Hinode, H. Roles of nano-sized au in the reduction of NOx by propene over Au/TiO2: An in situ drifts study. Appl. Catal. B Environ. 2010, 96, 299–306. [Google Scholar] [CrossRef]
- Ueda, A.; Oshima, T.; Haruta, M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B Environ. 1997, 12, 81–93. [Google Scholar] [CrossRef]
- Nikolaev, S.A.; Tsodikov, M.V.; Chistyakov, A.V.; Zharova, P.A.; Ezzgelenko, D.I. The activity of mono- and bimetallic gold catalysts in the conversion of sub- and supercritical ethanol to butanol. J. Catal. 2019, 369, 501–517. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Rudolph, M. Gold catalysis in total synthesis. Chem. Soc. Rev. 2008, 37, 1766–1775. [Google Scholar] [CrossRef]
- Alshammari, A.; Kalevaru, V.N.; Martin, A. Bimetallic catalysts containing gold and palladium for environmentally important reactions. Catalyst 2016, 6, 97. [Google Scholar] [CrossRef]
- Lin, M.; An, B.; Ni, N.; Jikihara, Y.; Nakayama, T.; Honma, T.; Takei, T.; Shishido, T.; Ishida, T.; Haruta, M. Role of the acid site for selective catalytic oxidation of NH3 over Au/Nb2O5. ACS Catal. 2019, 9, 1753–1756. [Google Scholar] [CrossRef]
- de Almeida, M.P.; Carabineiro, S.A.C. Dioxin decomposition and detection using gold based materials. J. Chem. Eng. 2012, 5, 56–62. [Google Scholar] [CrossRef]
- Zhao, Y.; Mann, M.D.; Pavlish, J.H.; Mibeck, B.A.F.; Dunham, G.E.; Olson, E.S. Application of gold catalyst for mercury oxidation by chlorine. Environ. Sci. Technol. 2006, 40, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Cheng, D.; Guo, Y.; Liang, Y. Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature. Appl. Catal. B. Environ. 2001, 33, 217–222. [Google Scholar] [CrossRef]
- Pattrick, G.; van der Lingen, E.; Corti, C.W.R.; Holliday, J.; Thompson, D.T. The potential for use of gold in automotive pollution control technologies: A short review. Top. Catal. 2004, 30, 273–279. [Google Scholar] [CrossRef]
- Tebandeke, E.; Coman, C.; Guillois, K.; Canning, G.; Ataman, E.; Knudsen, J.; Wallenberg, L.R.; Ssekaalo, H.; Schnadt, J.; Wendt, O.F. Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chem. 2014, 16, 1586–1593. [Google Scholar] [CrossRef]
- Bond, G.C. Periodic variations in the catalytic properties of metals. Platin. Met. Rev. 1968, 12, 100–105. [Google Scholar]
- Fujita, S.; Moribe, S.; Kanamori, Y.; Takezawa, N. Effects of the calcination and reduction conditions on a Cu/ZnO methanol synthesis catalyst. React. Kinet. Catal. Lett. 2000, 70, 11–16. [Google Scholar] [CrossRef]
- Özbek, M.O.; van Santen, R.A. The mechanism of ethylene epoxidation catalysis. Catal Lett. 2013, 143, 131–141. [Google Scholar]
- Hammers, B.; Nørskov, J.K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240. [Google Scholar] [CrossRef]
- Friend, C.M.; Stephen, A.K.H. Gold catalysis. ACC Chem. Res. 2014, 47, 729–730. [Google Scholar] [CrossRef]
- Bond, G.C.; Thompson, D.T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388. [Google Scholar] [CrossRef]
- Hutchings, G.J. Vapor-phase hydrochlorination of acetylene—Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295. [Google Scholar] [CrossRef]
- Soares, J.M.C.; Morrall, P.; Crossley, A.; Harris, P.; Bowker, M. Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts. J. Catal. 2003, 219, 17–24. [Google Scholar] [CrossRef]
- Guzman, J.; Gates, B.C. Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004, 126, 2672–2673. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.F.; Stucky, G.D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278–14280. [Google Scholar] [CrossRef]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32. [Google Scholar] [CrossRef]
- Zanella, R.; Louis, C.; Giorgio, S.; Touroude, R. Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J. Catal. 2004, 223, 328–339. [Google Scholar] [CrossRef]
- Grad, O.; Mihet, M.; Dan, M.; Blanita, G.; Radu, T.; Berghian-Grosan, C.; Lazar, M.D. Au/Reduced Graphene Oxide Composites: Eco-Friendly Preparation Method and Catalytic Applications for Formic Acid Dehydrogenation. J. Mater. Sci. 2019, 54, 6991–7004. [Google Scholar] [CrossRef]
- Glomm, W.R.; Oye, G.; Walmsley, J.; Sjoblom, J. Synthesis and characterization of gold nanoparticle-functionalized ordered mesoporous materials. J. Disper. Sci. Technol. 2005, 26, 729–744. [Google Scholar] [CrossRef]
- Andreeva, D.; Ivanov, I.; Ilieva, L.; Abrashev, M.V.; Zanella, R.; Sobczak, J.W.; Lisowski, W.; Kantcheva, M.; Avdeev, G.; Petrov, K. Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method. Appl. Catal. A Gen. 2009, 357, 159–169. [Google Scholar] [CrossRef]
- Sharma, A.S.; Kaur, H.; Shah, D. Selective oxidation of alcohols by supported gold nanoparticles: Recent advances. RSC Adv. 2016, 6, 28688–28727. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.A.; Dimitratos, N.; Miedziak, P.; Ntainjua, E.; Edwards, J.K.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Hutchings, G.J. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Phys. Chem. Chem. Phys. 2008, 10, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Dimitratos, N.; Lopez-Sanchez, J.A.; Anthonykutty, J.M.; Brett, G.; Carley, A.F.; Tiruvalam, R.C.; Herzing, A.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Oxidation of glycerol using gold–palladium alloy-supported nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 4952–4961. [Google Scholar] [CrossRef]
- Ma, Z.; Overbury, S.H.; Dai, S. Gold Nanoparticles as Chemical Catalysts. In Nanomaterials: Inorganic and Bioinorganic Perspectives; Lukehart, C.M., Scott, R.A., Eds.; John Wiley & Sons: Chichester, UK, 2008; pp. 247–266. [Google Scholar]
- Hutchings, G.J.; Haruta, M. A golden age of catalysis: A perspective. Appl. Catal. A Gen. 2005, 291, 2–5. [Google Scholar] [CrossRef]
- Zanella, R.; Giorgio, S.; Henry, C.R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642. [Google Scholar] [CrossRef]
- Ulrich, V.; Moroz, B.; Sinev, I.; Pyriaev, P.; Bukhtiyarov, V.; Grünert, W. Studies on three-way catalysis with supported gold catalysts. Influence of support and water content in feed. Appl. Catal. B 2017, 203, 572–581. [Google Scholar] [CrossRef]
- Chen, M.; Goodman, D.W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, I.; Kusior, A.; Grams, J.; Ziolek, M. The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials. J. Catal. 2007, 245, 259–266. [Google Scholar] [CrossRef]
- Golunski, S.; Rajaram, R.; Hodge, N.; Hutchings, G.J.; Kiely, C.J. Low-temperature redox activity in co-precipitated catalysts: A comparison between gold and platinum-group metals. Catal. Today 2002, 72, 107–113. [Google Scholar] [CrossRef]
- Solsona, B.; García, T.; Hutchings, G.J.; Taylor, S.H.; Makkee, M. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Appl. Catal. A 2009, 365, 222–230. [Google Scholar] [CrossRef]
- Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 2002, 6, 102–115. [Google Scholar] [CrossRef]
- Grisel, R.; Slyconish, J.; Nieuwenhuys, B. Oxidation reactions over multi-component catalysts: Low-temperature CO oxidation and the total oxidation of CH4. Top. Catal. 2001, 16, 425–431. [Google Scholar] [CrossRef]
- Lin, S.; Vannice, M.A. Gold dispersed on TiO2 and SiO2: Adsorption properties and catalytic behavior in hydrogenation reactions. Catal. Lett. 1991, 10, 47–61. [Google Scholar] [CrossRef]
- Oliver-Meseguer, J.; Cabrero-Antonino, J.R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 2012, 338, 1452–1455. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem. Eng. Technol. 2011, 34, 15–28. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Tsukuda, T. Microfluidic synthesis and catalytic application of PVP-stabilized, approximately 1 nm gold clusters. Langmuir 2008, 24, 11327–11330. [Google Scholar] [CrossRef]
- Bond, G.C.; Louis, C.; Thompson, D.T. Catalysis by Gold; Imperial College Press: London, UK, 2006. [Google Scholar]
- Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem. Int. Ed. 2008, 47, 9265–9268. [Google Scholar] [CrossRef]
- Ivanova, S.; Pitchon, V.; Zimmermann, Y.; Petit, C. Preparation of alumina supported gold catalysts: Influence of washing procedures, mechanism of particles size growth. Appl. Catal. A Gen. 2006, 298, 57–64. [Google Scholar] [CrossRef]
- Schwartz, V.; Mullins, D.R.; Yan, W.F.; Chen, B.; Dai, S.; Overbury, S.H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B. 2004, 108, 15782–15790. [Google Scholar] [CrossRef]
- Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: Mechanistic reasons for size- and support-dependent activity and selectivity. J. Phys. Chem. C 2009, 113, 17803–17810. [Google Scholar] [CrossRef]
- Shekhar, M.; Wang, J.; Lee, W.-S.; Williams, W.D.; Kim, S.M.; Stach, E.A.; Miller, J.T.; Delgass, W.N.; Riberio, F.H. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 2012, 134, 4700–4708. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, M.; Genet, M.J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Lai, T.; Clair, T.P.S.; Valden, M.; Goodman, D.W. Scanning tunneling microscopy of clusters. Prog. Surf. Sci. 1998, 29, 25–52. [Google Scholar] [CrossRef]
- Herzing, A.A.; Kiely, C.J.; Carley, A.F.; Landon, P.; Hutchings, G.J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 5, 1331–1335. [Google Scholar] [CrossRef]
- Valden, M.; Pak, S.; Lai, X.; Goodman, D.W. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal. Lett. 1998, 56, 7–10. [Google Scholar] [CrossRef]
- Laoufi, I.; Saint-Lager, M.-C.; Lazzari, R.; Jupille, J.; Robach, O.; Garaudée, S.; Cabailh, G.; Dolle, P.; Cruguel, H.; Bailly, A. Size and catalytic activity of supported gold nanoparticles: An in operando study during CO oxidation. J. Phys. Chem. C 2011, 115, 4673–4679. [Google Scholar] [CrossRef]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Albonetti, S.; Bonelli, R.; Epoupa Mengou, J.; Femoni, C.; Tiozzo, C.; Zacchini, S.; Trifiro, F. Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catal. Today 2008, 137, 483–488. [Google Scholar] [CrossRef]
- Cao, Y.; Jin, R.; Mirkin, C.A. DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 2001, 123, 7961–7962. [Google Scholar] [CrossRef]
- Nehl, C.L.; Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419. [Google Scholar] [CrossRef]
- Khalavka, Y.; Becker, J.; Sonnichsen, C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 2009, 131, 1871–1875. [Google Scholar] [CrossRef]
- Chiu, C.; Chung, P.; Lao, L.; Liao, C.; Huang, M.H. Facet-Dependent catalytic activity of gold nanocubes, octahedra and rhombic dodecahedra toward 4-nitroaniline reduction. J. Phys. Chem. C. 2012, 116, 23757–23763. [Google Scholar] [CrossRef]
- Jiji, S.G.; Gopchandran, K.G. Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. J. Colloid Interface Sci. 2019, 29, 9–16. [Google Scholar] [CrossRef]
- Grisel, R.J.H.; Kooyman, P.J.; Nieuwenhuys, B.E. Influence of the preparation of Au/Al2O3 on CH4 oxidation activity. J. Catal. 2000, 191, 430–437. [Google Scholar] [CrossRef]
- Andreeva, D.; Nedyalkova, R.; Ilieva, L.; Abrashev, M.V. Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A Gen. 2003, 246, 29–38. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. 2005, 117, 8062–8072. [Google Scholar] [CrossRef]
- Pan, X.; Bao, X. Reactions over catalysts confined in carbon nanotubes. Chem. Commun. 2008, 6271–6281. [Google Scholar] [CrossRef]
- Deshpande, R.M.; Buwa, V.V.; Rode, C.V.; Chaudhary, R.V.; Mills, P.V. Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid. Catal. Commun. 2002, 3, 269–274. [Google Scholar] [CrossRef]
- Li, L.; Wang, A.Q.; Qiao, B.; Lin, J.; Huang, Y.; Wang, X. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism. J. Catal. 2013, 299, 90–100. [Google Scholar] [CrossRef]
- Baatz, C.; Thielecke, N.; Prüße, U. Influence of the preparation conditions on the properties of gold catalysts for the oxidation of glucose. Appl. Catal. B 2007, 70, 653–660. [Google Scholar] [CrossRef]
- Mirescu, A.; Berndt, H.; Martin, A.; Prüße, U. Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Appl. Catal. A 2007, 317, 204–209. [Google Scholar] [CrossRef]
- Chen, M.S.; Goodman, D.W. Structure-activity relationships in supported Au catalysts. Catal. Today 2006, 111, 22–33. [Google Scholar] [CrossRef]
- Haruta, M. Role of perimeter interfaces in catalysis by Au nanoparticles. Faraday Discuss. 2011, 152, 11–32. [Google Scholar] [CrossRef]
- Ahmad, N.; Younus, H.A.; Chughtai, A.H.; Verpoort, F. Metal–organic molecular cages: Applications of biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. [Google Scholar] [CrossRef]
- Corma, A.; Garcıa, H.; Xamena, F.X.L. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef] [PubMed]
- Sayle, X.T.; Parker, S.C.; Catlow, C.R.A. The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci. 1994, 316, 329–336. [Google Scholar] [CrossRef]
- Abd El-Moemen, A.; Karpenko, A.; Denkwitz, Y.; Behm, R.J. Activity, stability and deactivation behavior of Au/CeO2 catalysts in the water gas shift reaction at increased reaction temperature (300 °C). J. Power Sources 2009, 190, 64–75. [Google Scholar] [CrossRef]
- Yi, N.; Si, R.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions. Energy Environ. Sci. 2010, 3, 831–837. [Google Scholar] [CrossRef]
- Carltonbird, M.; Eaimsumang, S.; Pongstabodee, S.; Boonyuen, S.; Meejoo, S.; Smith, S.M.; Luengnaruemitchai, A. Effect of the exposed ceria morphology on the catalytic activity of gold/ceria catalysts for the preferential oxidation of carbon monoxide. Chem. Eng. J. 2018, 344, 545–555. [Google Scholar] [CrossRef]
- Liu, J.Y. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2001, 3, 934–948. [Google Scholar] [CrossRef]
- Schubert, M.; Hackenberg, S.; van Veen, A.C.; Muhler, M.; Plzak, V.; Behm, R.J. CO Oxidation over supported gold catalysts—“Inert” and “active” support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122. [Google Scholar] [CrossRef]
- Tauster, S.J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Overbury, S.H.; Ortiz-soto, L.; Zhu, H.; Lee, B.; Amiridis, M.D.; Dai, S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions. Catal. Lett. 2004, 95, 99–106. [Google Scholar] [CrossRef]
- Ning, X.; Li, Y.; Dong, B.; Wang, H.; Yu, H.; Peng, F.; Yang, Y. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. J. Catal. 2017, 348, 100–109. [Google Scholar] [CrossRef]
- Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Ma, S.; Liu, P. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at mthe nanometer level. Proc. Natl. Acad. Sci. USA 2009, 106, 4975–4980. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wei, J.; Liu, F.; Qiao, B.; Pan, X.; Li, L.; Liu, J.; Wang, J.; Zhang, T. Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56–59. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Q.; Jiang, Z.; Mei, B.; Bao, X. Carbide-supported au catalysts for water-gas shift reactions: A new territory for the strong metal-support interaction effect. J. Am. Chem. Soc. 2018, 140, 13808–13816. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D.S.; Xiao, F.-S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 114, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Langer, L.; Bayot, V.; Grivei, E.; Issi, J.-P.; Heremans, J.P.; Olk, C.H.; Stockman, L.; Van Haesendonck, C.; Bruynseraede, Y. Quantum transport in a multiwalled carbon nanotube. Phys. Rev. Lett. 1996, 76, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Brgi, T.; Baiker, A. Heterogeneous Enantioselective hydrogenation over cinchona alkaloid modified platinum: Mechanistic insights into a complex reaction. Acc. Chem. Res. 2004, 37, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, R.; Li, L.; Kong, W.; Huang, H.; Liu, Y.; Kang, Z. Au nanoparticles in carbon nanotubes with high photocatalytic activity for hydrocarbon selective oxidation. Dalton Trans. 2014, 43, 12982–12988. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Cui, D.; Gao, F.; He, R. Attachment of gold nanoparticles on multi-walled carbon nanotubes. Nanoscience 2006, 11, 95–101. [Google Scholar]
- Fierro-Gonzaleza, J.C.; Gates, B.C. Catalysis by gold dispersed on supports: The importance of cationic gold. Chem. Soc. Rev. 2008, 37, 2127–2134. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 2011, 50, 10144–10151. [Google Scholar] [CrossRef]
- Fukuda, Y.; Utimoto, K.; Nosaki, H. Preparation of 2,3,4,5-tetrahydropyridines from 5-alkynylamines under the catalytic action of Au(III) heterocycles. Heterocycles 1987, 25, 297–300. [Google Scholar]
- Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. J. Org. Chem. 1991, 56, 3729–3731. [Google Scholar] [CrossRef]
- Yang, C.-G.; He, C. Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to olefins. J. Am. Chem. Soc. 2005, 127, 6966–6967. [Google Scholar] [CrossRef] [PubMed]
- Boronat, M.; Concepcion, P.; Corma, A. Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. Implications in catalysis. J. Phys. Chem. C 2009, 113, 16772–16784. [Google Scholar] [CrossRef]
- Zanella, R.; Louis, C.; Shin, C.; Henry, C.R.; Louis, C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. 2004, 222, 357–367. [Google Scholar] [CrossRef]
- Minicò, S.; Scirè, S.; Crisafulli, C.; Visco, A.M.; Galvagno, S. FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catal. Lett. 1997, 47, 273–276. [Google Scholar]
- Duan, Z.; Henkelman, G. Calculations of CO Oxidation over a Au/TiO2 Catalyst: A Study of Active Sites, Catalyst Deactivation, and Moisture Effects. ACS Catal. 2018, 8, 1376–1383. [Google Scholar] [CrossRef]
- Venezia, A.M.; Pantaleo, G.; Longo, A.; Carlo, G.D.; Casaletto, M.P.; Liotta, F.L.; Deganello, G. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 2005, 109, 2821–2827. [Google Scholar] [CrossRef]
- Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Record 2003, 3, 75–87. [Google Scholar] [CrossRef]
- Bond, G.C.; Thompson, D.T. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50. [Google Scholar] [CrossRef]
- Delannoy, L.; Fajerwerg, K.; Lakshmanan, P.; Potvin, C.; Methivier, C.; Louis, C. Supported gold catalysts for the decomposition of VOC: Total oxidation of propene in low concentration as model reaction. Appl. Catal. B 2010, 94, 117–124. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Y.; Li, C.; Shen, Y.; Han, L.; Hu, Z.; Di, X.; Liu, Z. Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Appl. Catal. B Environ. 2009, 91, 11–20. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef] [PubMed]
- Adnan, R.H.; Golovko, V.B. Benzyl alcohol oxidation using gold catalysts derived from Au8 clusters on TiO2. Catal. Lett. 2019, 149, 449–455. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Kochi, J.K. Metal Catalyzed Oxidations of Organic Compounds; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Joshi, S.R.; Kataria, K.L.; Sawant, S.B.; Joshi, J.B. Kinetics of oxidation of benzyl alcohol with dilute nitric acid. Ind. Eng. Chem. Res. 2005, 44, 325–333. [Google Scholar] [CrossRef]
- Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, L. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J. Catal. 2006, 244, 13–121. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Dhar, A.; Jana, P.; Jha, R.; Uphade, B.S. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem. 2005, 7, 768–770. [Google Scholar] [CrossRef]
- Abad, A.; Corma, A.; García, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism. Chemistry 2008, 14, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Dimitratos, N.; Lopez-Sanchez, J.A.; Morgan, D.; Carley, A.; Prati, L.; Hutchings, G.J. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal. Today 2007, 122, 317–324. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Liang, C.; Su, W.; Wang, C.; Feng, Z.; Li, C.; Qiu, J. Aerobic oxidation of alcohols over Au/TiO2: An insight on the promotion effect of water on the catalytic activity of Au/TiO2. Catal. Commun. 2008, 9, 2278–2281. [Google Scholar] [CrossRef]
- Costa, V.V.; Estrada, M.; Demidova, Y.; Prosvirinc, I.; Kriventsovc, V.; Cottaa, R.F.; Fuentesd, S.; Simakovd, A.; Gusevskaya, E.V. Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. J. Catal. 2012, 292, 148–156. [Google Scholar] [CrossRef]
- Ferraz, C.P.; Garcia, M.A.S.; Teixeira-Netob, É.; Rossi, L.M. Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: Weak vs. strong bases. RCS Adv. 2016, 30, 25279–25285. [Google Scholar] [CrossRef]
- Castro, K.P.R.; Garcia, M.A.S.; de Abreu, W.C.; de Sousa, S.A.A.; de Moura, C.V.R.; Costa, J.C.S.; de Moura, E.M. Aerobic oxidation of benzyl alcohol on a strontium-based gold material: Remarkable intrinsic basicity and reusable catalyst. Catalysts 2018, 8, 83. [Google Scholar]
- Alshammari, A.; Koeckritz, A.; Kalevaru, V.N.; Bagabas, A.; Martin, A. Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts. Int. J. Curr. Res. Chem. Pharm. Sci. 2014, 1, 25–34. [Google Scholar] [CrossRef]
- Dimitratos, N.; Lopez-Sanchez, J.A.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Bethell, D.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Phys. Chem. Chem. Phys. 2009, 11, 5142–5153. [Google Scholar] [CrossRef]
- Enache, D.I. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365. [Google Scholar] [CrossRef]
- Li, G.; Enache, D.I.; Edwards, J.; Carley, A.F.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au-Pd catalysts. Catal. Lett. 2006, 110, 7–13. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Román-Leshkov, Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3, 1465–1479. [Google Scholar] [CrossRef]
- Adipic Acid (ADPA). 2018 World Market. Outlook and Forecast up to 2027; Merchant Research and Consulting: Birmingham, UK, 2018. [Google Scholar]
- Castellan, A.; Bart, J.C.J.; Cavallaro, S. Synthesis of adipic acid via nitric acid oxidation of cyclohexanol in a two-step continuous process. Catal. Today 1991, 9, 301–322. [Google Scholar] [CrossRef]
- Lindsay, A.F. Nitric acid oxidation design in the manufacture of adipic acid from cyclohexanol and cyclohexanone. Chem. Eng. Sci. 1954, 3, 78–93. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. N2O-Free single-pot conversion of cyclohexane to adipic acid catalysed by an iron(ii) scorpionate complex. Green Chem. 2017, 19, 1499–1501. [Google Scholar] [CrossRef]
- Joo, J.C.; Khusnutdinova, A.N.; Flick, R.; Kim, T.; Bornscheuer, U.T.; Yakunin, A.F.; Mahadevan, R. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 2017, 8, 1406–1413. [Google Scholar] [CrossRef]
- Hwang, K.C.; Sagadevan, A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science 2014, 346, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ji, H.; Chen, Y.; Han, Y.; Song, X.; She, Y.; Zhong, R. Oxidation of cyclohexane to adipic acid using Fe−porphyrin as a biomimetic catalyst. Org. Process. Res. Dev. 2004, 8, 418–420. [Google Scholar] [CrossRef]
- Lü, H.; Ren, W.; Liu, P.; Qi, S.; Wang, W.; Feng, Y.; Sun, F.; Wang, Y. One-step aerobic oxidation of cyclohexane to adipic acid using an Anderson-type catalyst [(C18H37)2N(CH3)2]6Mo7O24. Appl. Catal. A Gen. 2012, 441–442, 136–141. [Google Scholar]
- Iwahama, T.; Syojyo, K.; Sakaguchi, S.; Ishii, Y. Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn(acac)2 and Co(OAc)2. Org. Process. Res. Dev. 1998, 2, 255–260. [Google Scholar] [CrossRef]
- Zou, G.; Zhong, W.; Xu, Q.; Xiao, J.; Liu, C.; Li, Y.; Mao, L.; Kirk, S.; Yin, D. Oxidation of cyclohexane to adipic acid catalyzed by Mn-doped titanosilicate with hollow structure. Catal. Commun. 2015, 58, 46–52. [Google Scholar] [CrossRef]
- Acharyya, S.S.; Ghosh, S.; Bal, R. Nanoclusters of Cu(ii) supported on nanocrystalline W(vi) oxide: A potential catalyst for single-step conversion of cyclohexane to adipic acid. Green Chem. 2015, 17, 3490–3499. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Mahmoodi Hashemi, M. One pot oxidative cleavage of cyclohexene to adipic acid using silver tungstate nano-rods in a Bronsted acidic ionic liquid. RSC Adv. 2015, 5, 31298–31302. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Mahmoodi Hashemi, M. Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst. Catal. Commun. 2014, 43, 169–172. [Google Scholar] [CrossRef]
- Ghiaci, M.; Hosseini, S.M.; Shahzeydi, A.; Martínez-Huerta, M.V. Oxidation of cyclohexanol to adipic acid with molecular oxygen catalyzed by ZnO nanoparticles immobilized on hydroxyapatite. RSC Adv. 2016, 6, 78487–78495. [Google Scholar] [CrossRef]
- Zou, G.; Zhong, W.; Mao, L.; Xu, Q.; Xiao, J.; Yin, D.; Xiao, Z.; Kirk, S.R.; Shu, T. A non-nitric acid method of adipic acid synthesis: Organic solvent- and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts. Green Chem. 2015, 17, 1884–1892. [Google Scholar] [CrossRef]
- Sato, K.; Aoki, M.; Noyori, R. A “Green” route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998, 281, 1646–1647. [Google Scholar] [CrossRef] [PubMed]
- Usui, Y.; Sato, K. A green method of adipic acid synthesis: Organic solvent- and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide. Green Chem. 2003, 5, 373–375. [Google Scholar] [CrossRef]
- Alshammari, A.; Koeckritz, A.; Kalevaru, V.N.; Bagabas, A.; Martin, A. Potential of supported gold bimetallic catalysts for green synthesis of adipic acid from cyclohexane. Top. Catal. 2015, 58, 1069–1076. [Google Scholar] [CrossRef]
- Yu, H.; Peng, F.; Tan, J.; Hu, X.; Wang, H.; Yang, J.; Zheng, W. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew. Chem. Int. Ed. 2011, 50, 3978–3982. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhu, M.O.; Li, W.; Tong, Z.F. Highly efficient nano-catalysts using activated carbon as a support for one-step oxidation of cyclohexane to adipic acid. Key Eng. Mater. 2013, 562–565, 754–759. [Google Scholar] [CrossRef]
Characteristics | Analysis Methods | Delivered Information |
---|---|---|
Element Composition |
| |
Structural Properties |
| |
Crystallinity |
| |
Size and Shape |
| |
Surface & Textural Properties |
|
Catalyst | Au wt. (%) | Oxidant | T (°C) | Time (h) | Solvent | X (%) | Selectivity | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
BAL | BA | BB | ||||||||
Au/MgO | 7.5 | O2 | 130 | 5 | No solvent | 51 | 86 | - | 14 | [140] |
Au/Cao | 4.7 | O2 | 130 | 5 | No solvent | 33.3 | 91.3 | - | 8.6 | [98] |
Au/Al2O3 | 6.4 | O2 | 130 | 5 | No solvent | 68.9 | 56.0 | - | 35.0 | [98] |
Au/ZnO | 6.6 | O2 | 130 | 5 | No solvent | 40.5 | 92.8 | - | 7.2 | [98] |
Au/npCeO2 | 0.5 | Air | 90 | 2 | No solvent | 98 | 99 | 0 | 0 | [141] |
Au/TiO2 | 1.0 | O2 | 160 | 6 | No solvent | 55 | 73.7 | 15.1 | - | [142] |
Au/TiO2 | 7.8 | O2 | 100 | 8 | p-Xylene | 12 | >99 | 0 | 0 | [143] |
Au/TiO2 | 7.8 | O2 | 100 | 8 | water | 83 | 67 | 10 | 23 | [101] |
Au/TiO2 | 7.8 | O2 | 100 | 8 | No solvent | 15 | 65 | 14 | 11 | [101] |
Au/MgO | 2.6 | O2 | 100 | 3 | Methanol | 100 | 8 | - | 6 | [144] |
AuPVA/TiO2 | 1.7 | O2 | 100 | 1 | No solvent | 3 | 100 | 0 | 0 | [145] |
Au/Srsup | 2.0 | O2 | 120 | 2.5 | No solvent | 16.2 | 73.1 | 26.9 | 0 | [146] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, A.S. Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts 2019, 9, 402. https://doi.org/10.3390/catal9050402
Alshammari AS. Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts. 2019; 9(5):402. https://doi.org/10.3390/catal9050402
Chicago/Turabian StyleAlshammari, Ahmad S. 2019. "Heterogeneous Gold Catalysis: From Discovery to Applications" Catalysts 9, no. 5: 402. https://doi.org/10.3390/catal9050402
APA StyleAlshammari, A. S. (2019). Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts, 9(5), 402. https://doi.org/10.3390/catal9050402