Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Composite Photocatalysts
2.1. Semiconductor-Based Composite Photocatalysts
2.1.1. Cadmium Sulfide
2.1.2. Copper Sulfide
2.1.3. Silver Sulfide
2.1.4. Zinc Sulfide
2.2. Electrically Conductive Materials (Non-Noble Metal)-Based Composite Photocatalysts
2.2.1. Graphene
2.2.2. Reduced Graphene Oxide and Graphene Oxide
2.2.3. Conductive Polymer
2.2.4. Conductive Substrate
2.3. Magnetic Materials-Based Composite Photocatalysts
3. Experimental Parameters for Enhancing Photocatalytic Activity
3.1. Loading with Metal
3.1.1. Noble Metal Loading
3.1.2. Transition Metal Doping
3.2. Non-Metal Doping
3.3. Calcination
3.4. Effects of pH Level
3.5. Sacrificial Agent
3.6. Morphology
3.6.1. Facet Effect
3.6.2. Light Trapping (Light Harvesting)
3.7. Fabrication Method
3.8. Crystal Size
4. Conclusions and Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Norskov, J.K.; Christensen, C.H. Toward efficient hydrogen production at surfaces. Science 2006, 312, 1322–1323. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Veziroǧlu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 2001, 26, 13–28. [Google Scholar] [CrossRef]
- Politano, A.; Cattelan, M.; Boukhvalov, D.W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N.G.; Lacovig, P.; Lizzit, S.; Farías, D.; et al. Unveiling the mechanisms leading to H2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano 2016, 10, 4543–4549. [Google Scholar] [CrossRef]
- Christensen, C.H.; Johannessen, T.; Sørensen, R.Z.; Nørskov, J.K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144. [Google Scholar] [CrossRef]
- Mendoza-Damián, G.; Hernández-Gordillo, A.; Fernández-García, M.E.; Acevedo-Peña, P.; Tzompantzi-Morales, F.J.; Pérez-Hernández, R. Influence of ZnS wurtzite–sphalerite junctions on ZnO Core-ZnS Shell-1D photocatalysts for H2 production. Int. J. Hydrogen Energy 2019, 44, 10528–10540. [Google Scholar] [CrossRef]
- Kılkış, B.; Kılkış, Ş. Hydrogen economy model for nearly net-zero cities with exergy rationale and energy-water nexus. Energies 2018, 11, 1226. [Google Scholar] [CrossRef]
- Weidner, J.W. Solar Energy: An Enabler of Hydrogen Economy? Electrochem. Soc. Interface 2018, 27, 45. [Google Scholar] [CrossRef]
- Viktorsson, L.; Heinonen, J.; Skulason, J.; Unnthorsson, R. A step towards the hydrogen Economy—A life cycle cost analysis of A hydrogen refueling station. Energies 2017, 10, 763. [Google Scholar] [CrossRef]
- Ke, X.; Dai, K.; Zhu, G.; Zhang, J.; Liang, C. In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Appl. Surf. Sci. 2019, 481, 669–677. [Google Scholar] [CrossRef]
- An, Z.; Gao, J.; Wang, L.; Zhao, X.; Yao, H.; Zhang, M.; Tian, Q.; Liu, Y. Novel microreactors of polyacrylamide (PAM) CdS microgels for admirable photocatalytic H2 production under visible light. Int. J. Hydrogen Energy 2019, 44, 1514–1524. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Chen, D.; Yu, Z.T.; Zou, Z.G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606–11630. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Majeed, I.; Nadeem, M.A.; Al-Oufi, M.; Nadeem, M.A.; Waterhouse, G.I.N.; Badshah, A.; Metson, J.B.; Idriss, H. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: A case study of the Au/CdS system. Appl. Catal. B-Environ. 2016, 182, 266–276. [Google Scholar] [CrossRef]
- Cao, J.; Sun, J.Z.; Hong, J.; Li, H.Y.; Chen, H.Z.; Wang, M. Carbon Nanotube/CdS Core–Shell Nanowires Prepared by a Simple Room-Temperature Chemical Reduction Method. Adv. Mater. 2004, 16, 84–87. [Google Scholar] [CrossRef]
- Chang, C.J.; Yang, T.L.; Weng, Y.C. Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. J. Solid State Chem. 2014, 214, 101–107. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.J. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. J. Hazard. Mater. 2014, 278, 444–453. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Chen, Z.G.; Li, F.; Wang, L.; Lu, G.Q.; Cheng, H.M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 2009, 23, 3452–3454. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core–shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interface 2013, 5, 10317–10324. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, Z.; Liu, X.; Jia, H.; Du, P. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 2016, 8, 4748–4756. [Google Scholar] [CrossRef]
- Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci. Rep.-UK 2016, 6, 22268. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Sun, Z.; Ma, L.; Xu, L.; Wang, Y. Noble-metal-free photocatalysts MoS2–graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chem. Commun. 2014, 50, 11004–11007. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, H.; Zhang, L.; Lu, D.; Du, P. Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. J. Mater. Chem. A 2016, 4, 13289–13295. [Google Scholar] [CrossRef]
- Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. [Google Scholar] [CrossRef]
- Iwashina, K.; Iwase, A.; Ng, Y.H.; Amal, R.; Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, H.; Xiao, L.; Huang, J. CuS/ZnS hexagonal plates with enhanced hydrogen evolution activity under visible light irradiation. Powder Technol. 2016, 288, 103–108. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Fan, M.; Hong, Y.; Hu, B.; Yu, L.; Shi, W. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int. J. Hydrogen Energy 2017, 42, 12210–12219. [Google Scholar] [CrossRef]
- Chang, C.J.; Weng, H.T.; Chang, C.C. CuSZnS1−xOx/g-C3N4 heterostructured photocatalysts for efficient photocatalytic hydrogen production. Int. J. Hydrogen Energy 2017, 42, 23568–23577. [Google Scholar] [CrossRef]
- Chang, C.J.; Wei, Y.H.; Kuo, W.S. Free-standing CuS–ZnS decorated carbon nanotube films as immobilized photocatalysts for hydrogen production. Int. J. Hydrogen Energy 2018. [Google Scholar] [CrossRef]
- Markovskaya, D.V.; Cherepanova, S.V.; Saraev, A.A.; Gerasimov, E.Y.; Kozlova, E.A. Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and NizCd0.3Zn0.7S1+z. Chem. Eng. J. 2015, 262, 146–155. [Google Scholar] [CrossRef]
- Chandra, M.; Bhunia, K.; Pradhan, D. Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting. Inorg. Chem. 2018, 57, 4524–4533. [Google Scholar] [CrossRef]
- Wang, Q.; An, N.; Bai, Y.; Hang, H.; Li, J.; Lu, X.; Liu, Y.; Wang, F.; Li, Z.; Lei, Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int. J. Hydrogen Energy 2013, 38, 10739–10745. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.J.; Weng, H.T. Efficient H2 production using Ag2S-coupled ZnO@ZnS core–shell nanorods decorated metal wire mesh as an immobilized hierarchical photocatalyst. ACS Sustain. Chem. Eng. 2016, 4, 1381–1391. [Google Scholar] [CrossRef]
- Yue, S.; Wei, B.; Guo, X.; Yang, S.; Wang, L.; He, J. Novel Ag2S/ZnS/carbon nanofiber ternary nanocomposite for highly efficient photocatalytic hydrogen production. Catal. Commun. 2016, 76, 37–41. [Google Scholar] [CrossRef]
- Yang, X.; Xue, H.; Xu, J.; Huang, X.; Zhang, J.; Tang, Y.B.; Ng, W.T.; Kwong, H.L.; Meng, X.M.; Lee, C.S. Synthesis of porous ZnS:Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS Appl. Mater. Interface 2014, 6, 9078–9084. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Li, L.; Zhang, W.; Sui, T.; Li, Y.; Zhang, X. Synthesis of ZnS@CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method. Mol. Catal. 2018, 447, 1–12. [Google Scholar] [CrossRef]
- Hao, X.; Zhou, J.; Cui, Z.; Wang, Y.; Wang, Y.; Zou, Z. Zn-vacancy mediated electron–hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B-Environ. 2018, 229, 41–51. [Google Scholar] [CrossRef]
- Nawaz, M. Morphology-controlled preparation of Bi2S3-ZnS chloroplast-like structures, formation mechanism and photocatalytic activity for hydrogen production. J. Photochem. Photobiol. A Chem. 2017, 332, 326–330. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, Z.; Jia, H.; Lu, D.; Du, P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675–683. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 2015, 5, 1500010. [Google Scholar] [CrossRef]
- Gugliuzza, A.; Politano, A.; Drioli, E. The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 2017, 16, 78–85. [Google Scholar] [CrossRef]
- Quiroz-Cardoso, O.; Oros-Ruiz, S.; Solis-Gomez, A.; López, R.; Gómez, R. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 2019, 237, 227–235. [Google Scholar] [CrossRef]
- Chu, K.W.; Lee, S.L.; Chang, C.J.; Liu, L. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers 2019, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Wang, C.W.; Wei, Y.H.; Chen, C.Y. Enhanced Photocatalytic H2 Production activity of Ag-doped Bi2WO6-graphene Based Photocatalysts. Int. J. Hydrogen Energy 2018, 43, 11345–11354. [Google Scholar] [CrossRef]
- Azarang, M.; Sookhakian, M.; Aliahmad, M.; Dorraj, M.; Basirun, W.J.; Goh, B.T.; Alias, Y. Nitrogen-doped graphene-supported zinc sulfide nanorods as efficient Pt-free for visible-light photocatalytic hydrogen production. Int. J. Hydrogen Energy 2018, 43, 14905–14914. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, Y.G.; Weng, H.T.; Wei, Y.H. Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl. Surf. Sci. 2018, 451, 198–206. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, Y.G.; Chao, P.Y.; Chen, J.K. AgI-BiOI-graphene composite photocatalysts with enhanced interfacial charge transfer and photocatalytic H2 production activity. Appl. Surf. Sci. 2019, 469, 703–712. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Sun, J.; Jin, Y. High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core–Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H2 Production from Water. ACS Appl. Mater. Interface 2014, 6, 19905–19913. [Google Scholar] [CrossRef]
- Chang, C.J.; Wei, Y.H.; Huang, K.P. Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int. J. Hydrogen Energy 2017, 42, 23578–23586. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.A.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Nethravathi, C.; Nisha, T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Graphene–nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 2009, 47, 2054–2059. [Google Scholar] [CrossRef]
- Tsai, M.H.; Chang, C.J.; Lu, H.H.; Liao, Y.F.; Tseng, I.H. Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films 2013, 544, 324–330. [Google Scholar] [CrossRef]
- Reddy, P.M.; Chang, C.J.; Lai, C.F.; Su, M.J.; Tsai, M.H. Improved organic-inorganic/graphene hybrid composite as encapsulant for white LEDs: Role of graphene, titanium (IV) isopropoxide and diphenylsilanediol. Compos. Sci. Technol. 2018, 165, 95–105. [Google Scholar] [CrossRef]
- Mathkar, A.; Tozier, D.; Cox, P.; Ong, P.; Galande, C.; Balakrishnan, K.; Reddy, A.L.M.; Ajayan, P.M. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 2012, 3, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Yan, J.A.; Xian, L.; Chou, M.Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 2009, 103, 086802. [Google Scholar] [CrossRef]
- Zhuo, S.; Shao, M.; Lee, S.T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064. [Google Scholar] [CrossRef]
- Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 2010, 20, 2255–2262. [Google Scholar] [CrossRef]
- Peng, T.; Li, K.; Zeng, P.; Zhang, Q.; Zhang, X. Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 2012, 116, 22720–22726. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Z.; Kan, W.; Jiao, S.; Zhu, H.; Kumar, R.V. Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. J. Mater. Chem. 2012, 22, 7291–7299. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J.R. Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589. [Google Scholar] [CrossRef]
- Wang, X.; Yin, L.; Liu, G. Light irradiation-assisted synthesis of ZnO–CdS/reduced graphene oxide heterostructured sheets for efficient photocatalytic H2 evolution. Chem. Commun. 2014, 50, 3460–3463. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, L.; Ran, J.; Yu, J.; Qiao, S.Z. Ternary NiS/ZnxCd1−xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2-Production Activity. Adv. Energy Mater 2014, 4, 1301925. [Google Scholar] [CrossRef]
- Lee, S.L.; Chang, C.J. Recent Developments about Conductive Polymer Based Composite Photocatalysts. Polymers 2019, 11, 206. [Google Scholar] [CrossRef]
- Chang, C.J.; Chu, K.W. ZnS/polyaniline composites with improved dispersing stability and high photocatalytic hydrogen production activity. Int. J. Hydrogen Energy 2016, 41, 21764–21773. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Z.Y.; Zhao, H.; Yu, W.; Wu, S.; Liu, J.; Chen, L.; Li, Y.; Su, B.L. Probing conducting polymers@cadmium sulfide core–shell nanorods for highly improved photocatalytic hydrogen production. J. Colloid Interface Sci. 2018, 521, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, B.; Schmidt, B.; Mijowska, E.; Kaleńczuk, R. PANI/NaTaO3 composite photocatalyst for enhanced hydrogen generation under UV light irradiation. Pol. J. Chem. Technol. 2017, 19, 115–119. [Google Scholar] [CrossRef]
- Sasikala, R.; Gaikwad, A.P.; Jayakumar, O.D.; Girija, K.G.; Rao, R.; Tyagi, A.K.; Bharadwaj, S.R. Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids Surf. A 2015, 481, 485–492. [Google Scholar] [CrossRef]
- Chang, C.J.; Chao, P.Y. Efficient photocatalytic hydrogen production by doped ZnS grown on Ni foam as porous immobilized photocatalysts. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.J. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. Int. J. Hydrogen Energy 2014, 39, 16524–16533. [Google Scholar] [CrossRef]
- Chang, C.J.; Lee, Z.; Wei, M.; Chang, C.C.; Chu, K.W. Photocatalytic hydrogen production by magnetically separable Fe3O4@ZnS and NiCo2O4@ZnS core–shell nanoparticles. Int. J. Hydrogen Energy 2015, 40, 11436–11443. [Google Scholar] [CrossRef]
- Chang, C.J.; Lee, Z.; Chu, K.W.; Wei, Y.H. CoFe2O4@ZnS core–shell spheres as magnetically recyclable photocatalysts for hydrogen production. J. Taiwan Inst. Chem. Eng. 2016, 66, 386–393. [Google Scholar] [CrossRef]
- Murdoch, M.G.I.N.; Waterhouse, G.I.N.; Nadeem, M.A.; Metson, J.B.; Keane, M.A.; Howe, R.F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489. [Google Scholar] [CrossRef]
- Sun, F.; Qiao, X.; Tan, F.; Wang, W.; Qiu, X. One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci. 2012, 47, 7262–7268. [Google Scholar] [CrossRef]
- Sreethawong, T.; Yoshikawa, S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal. Commun. 2005, 6, 661–668. [Google Scholar] [CrossRef]
- Zhou, H.; Pan, J.; Ding, L.; Tang, Y.; Ding, J.; Guo, Q.; Fan, T.; Zhang, D. Biomass-derived hierarchical porous CdS/M/TiO2 (M = Au, Ag, Pt, Pd) ternary heterojunctions for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2014, 39, 16293–16301. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl. Mater. Interface 2013, 5, 1031–1037. [Google Scholar] [CrossRef]
- Pany, S.; Naik, B.; Martha, S.; Parida, K. Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interface 2014, 6, 839–846. [Google Scholar] [CrossRef]
- Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 2014, 136, 9236–9239. [Google Scholar] [CrossRef]
- Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Manjunath, K.; Souza, V.S.; Nagaraju, G.; Santos, J.M.L.; Dupont, J.; Ramakrishnappa, T. Superior activity of the CuS–TiO2/Pt hybrid nanostructure towards visible light induced hydrogen production. New J. Chem. 2016, 40, 10172–10180. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, L.; Ma, L.; Guo, L. Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1−x−yS catalyst. Catal. Commun. 2008, 9, 126–130. [Google Scholar] [CrossRef]
- Kimi, M.; Yuliati, L.; Shamsuddin, M. Preparation and characterization of In and Cu co-doped ZnS photocatalysts for hydrogen production under visible light irradiation. J. Energy Chem. 2016, 25, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.S.; Ji, S.M.; Bae, S.W.; Son, H.C.; Lee, J.S. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J. Photochem. Photobiol. A Chem. 2007, 188, 112–119. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Lu, G.Q.; Cheng, H.M. Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods. Int. J. Hydrogen Energy 2010, 35, 8199–8205. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Liu, M.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2018, 444, 485–490. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Zhang, L.; Li, H.; Liu, H.; Li, W. Transition metal-doped amorphous molybdenum sulfide/graphene ternary cocatalysts for excellent photocatalytic hydrogen evolution: Synergistic effect of transition metal and graphene. J. Colloid Interface Sci. 2019, 533, 287–296. [Google Scholar] [CrossRef]
- Wang, H.; Tsai, C.; Kong, D.; Chan, K.; Abild-Pedersen, F.; Nørskov, J.K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575. [Google Scholar] [CrossRef]
- Weng, Y.C.; Chou, Y.D.; Chang, C.J.; Chan, C.C.; Chen, K.Y.; Su, Y.F. Screening of ZnS-based photocatalysts by scanning electrochemical microscopy and characterization of potential photocatalysts. Electrochim. Acta 2014, 125, 354–361. [Google Scholar] [CrossRef]
- Chang, C.J.; Chu, K.W.; Hsu, M.H.; Chen, C.Y. Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. Int. J. Hydrogen Energy 2015, 40, 14498–14506. [Google Scholar] [CrossRef]
- Zhang, X.; Jing, D.; Liu, M.; Guo, L. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts. Catal. Commun. 2008, 9, 1720–1724. [Google Scholar] [CrossRef]
- Chang, C.J.; Lee, Z.; Wang, C.F. Photocatalytic hydrogen production by stainless steel@ZnS core–shell wire mesh photocatalyst from saltwater. Int. J. Hydrogen Energy 2014, 39, 20754–20763. [Google Scholar] [CrossRef]
- Rajaambal, S.; Sivaranjani, K.; Gopinath, C.S. Recent developments in solar H2 generation from water splitting. J. Chem. Sci. 2015, 127, 33–47. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Tsuji, I.; Kudo, A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. J. Photochem. Photobiol. A Chem. 2003, 156, 249–252. [Google Scholar] [CrossRef]
- Hong, E.; Kim, J.H. Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2014, 39, 9985–9993. [Google Scholar] [CrossRef]
- Chang, C.J.; Huang, K.L.; Chen, J.K.; Chu, K.W.; Hsu, M.H. Improved photocatalytic hydrogen production of ZnO/ZnS based photocatalysts by Ce doping. J. Taiwan Inst. Chem. Eng. 2015, 55, 82–89. [Google Scholar] [CrossRef]
- Li, Y.; Ma, G.; Peng, S.; Lu, G.; Li, S. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1−x−0.5yOx(OH)y) under visible light irradiation. Appl. Catal. A-Gen. 2009, 363, 180–187. [Google Scholar] [CrossRef]
- Simon, T.; Bouchonville, N.; Berr, M.J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A.S.; Rogach, A.L.; et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/gC3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221. [Google Scholar] [CrossRef] [PubMed]
- Amirav, L.; Alivisatos, A.P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054. [Google Scholar] [CrossRef]
- Chang, C.J.; Hsu, M.H.; Weng, Y.C.; Tsay, C.Y.; Lin, C.K. Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance. Thin Solid Films 2013, 528, 167–174. [Google Scholar] [CrossRef]
- Panmand, R.P.; Sethi, Y.A.; Deokar, R.S.; Late, D.J.; Gholap, H.M.; Baeg, J.O.; Kale, B.B. In situ fabrication of highly crystalline CdS decorated Bi2S3 nanowires (nano-heterostructure) for visible light photocatalyst application. RSC Adv. 2016, 6, 23508–23517. [Google Scholar] [CrossRef]
- Chang, C.J.; Tsai, M.H.; Hsu, Y.H.; Tuan, C.S. Morphology and optoelectronic properties of ZnO rod array/conjugated polymer hybrid films. Thin Solid Films 2008, 516, 5523–5526. [Google Scholar] [CrossRef]
- Xu, H.; Yi, J.; She, X.; Liu, Q.; Song, L.; Chen, S.; Yang, Y.; Song, Y.; Lou, J.; Li, H.; et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2018, 220, 379–385. [Google Scholar] [CrossRef]
- Ding, J.; Hong, B.; Luo, Z.; Sun, S.; Bao, J.; Gao, C. Mesoporous monoclinic CaIn2S4 with surface nanostructure: An efficient photocatalyst for hydrogen production under visible light. J. Phys. Chem. C 2014, 118, 27690–27697. [Google Scholar] [CrossRef]
- Shen, J.; Zai, J.; Yuan, Y.; Qian, X. 3D hierarchical ZnIn2S4: The preparation and photocatalytic properties on water splitting. Int. J. Hydrogen Energy 2012, 37, 16986–16993. [Google Scholar] [CrossRef]
- Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, Y.; Muhammad, Z.; Wu, C.; Yang, S.; He, Q.; Zheng, X.; Chen, S.; Ge, B.; Song, L. Active {010} facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst. Nano Res. 2017, 10, 3817–3825. [Google Scholar] [CrossRef]
- Bai, Z.; Yan, X.; Li, Y.; Kang, Z.; Cao, S.; Zhang, Y. 3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research. Adv. Energy Mater. 2016, 6, 1501459. [Google Scholar] [CrossRef]
- Li, W.; Wu, Z.; Wang, J.; Elzatahry, A.A.; Zhao, D. A perspective on mesoporous TiO2 materials. Chem. Mater. 2013, 26, 287–298. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, H.; Ding, J.; Zhang, D.; Zhu, H.; Fan, T. Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Phys. Chem. Chem. Phys. 2011, 13, 10872–10876. [Google Scholar] [CrossRef]
- Chang, C.J.; Kuo, E.H. Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 22–29. [Google Scholar] [CrossRef]
- Hung, S.T.; Chang, C.J.; Hsu, M.H. Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition. J. Hazard. Mater. 2011, 198, 307–316. [Google Scholar] [CrossRef]
- Kluth, O.; Rech, B.; Houben, L.; Wieder, S.; Schöpe, G.; Beneking, C.; Wagner, H.; Löffl, A.; Schock, H.W. Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 1999, 351, 247–253. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Yan, W.; Guo, L. Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 2006, 31, 2018–2024. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Chen, Z.G.; Li, F.; Lu, G.Q.M.; Cheng, H.M. Efficient and stable photocatalytic H2 evolution from water splitting by (Cd0.8Zn0.2) S nanorods. Electrochem. Commun. 2009, 11, 1174–1178. [Google Scholar] [CrossRef]
- Sung, Y.M.; Lee, Y.J.; Park, K.S. Kinetic Analysis for Formation of Cd1−xZnxSe Solid-Solution Nanocrystals. J. Am. Chem. Soc. 2006, 128, 9002–9003. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Shang, M.; Yin, W.; Sun, S.; Zhang, L. Enhanced photocatalytic hydrogen evolution under visible light over Cd1−xZnxS solid solution with cubic zinc blend phase. Int. J. Hydrogen Energy 2010, 35, 19–25. [Google Scholar] [CrossRef]
- Li, Q.; Meng, H.; Zhou, P.; Zheng, Y.; Wang, J.; Yu, J.; Gong, J. Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity. ACS Catal. 2013, 3, 882–889. [Google Scholar] [CrossRef]
- Zhang, K.; Jing, D.; Xing, C.; Guo, L. Significantly improved photocatalytic hydrogen production activity over Cd1−xZnxS photocatalysts prepared by a novel thermal sulfuration method. Int. J. Hydrogen Energy 2007, 32, 4685–4691. [Google Scholar] [CrossRef]
- Park, H.; Choi, W.; Hoffmann, M.R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 2008, 18, 2379–2385. [Google Scholar] [CrossRef]
- Li, W.; O’Dowd, G.; Whittles, T.J.; Hesp, D.; Gründer, Y.; Dhanak, V.R.; Jäckel, F. Colloidal dual-band gap cell for photocatalytic hydrogen generation. Nanoscale 2015, 7, 16606–16610. [Google Scholar] [CrossRef] [Green Version]
- Baldoví, H.G.; Latorre-Sánchez, M.; Esteve-Adell, I.; Khan, A.; Asiri, A.M.; Kosa, S.A.; Garcia, H. Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. J. Nanopart. Res. 2016, 18, 240–248. [Google Scholar] [CrossRef]
- Holmes, M.A.; Townsend, T.K.; Osterloh, F.E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48, 371–373. [Google Scholar] [CrossRef]
- Grigioni, I.; Bernareggi, M.; Sinibaldi, G.; Dozzi, M.V.; Selli, E. Size-dependent performance of CdSe quantum dots in the photocatalytic evolution of hydrogen under visible light irradiation. Appl. Catal. A-Gen. 2016, 518, 176–180. [Google Scholar] [CrossRef]
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
CdS/ZnO | Heterostructure | Two-step precipitation | Na2S, Na2SO3 | 1805 | [17] (2009) |
g-C3N4/CdS | Core–shell | Solvothermal & chemisorption | Na2S, Na2SO3 | 4200 | [18] (2013) |
Ni(OH)2-CdS/g-C3N4 | Core–shell | Mixture | Na2S, Na2SO3 | 115.2 | [19] (2016) |
Ni/CdS/g-C3N4 | Hybrid system | NaBH4 reduction method | triethanolamine | 1258.7 | [20] (2016) |
MoS2-graphene/CdS | Nanoparticle/nanorods | Hydrothermal | Lactic acid | 2320 μmol h−1 | [21] (2014) |
Ni3N/CdS | Nanorods | Two step in-situ growth method | Na2S, Na2SO3 | ~62 | [22] (2016) |
MoS2/CdS | Heterostructure | Precipitation | Lactic acid | ~540 | [23] (2008) |
Photocatalyst | Structure | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
CuS/ZnS | Hexagonal plates | Solvothermal | Na2S, Na2SO3 | 1233.5 | [25] (2015) |
CuS/g-C3N4 | Nanocomposites | In-situ growth method | triethanolamine | 17.2 | [26] (2017) |
CuS-ZnS1−xOx/g-C3N4 | Heterostructure | Thermal decomposition and hydrothermal | Na2S, Na2SO3, NaCl | 10,900 | [27] (2017) |
CuS-ZnS/CNTF | Nanocomposite | Hydrothermal | Na2S, Na2SO3, NaCl | 1213.5 | [28] (2018) |
CuS/Cd0.3Zn0.7S | Nanoparticles | Two-step technique | Na2S, Na2SO3 | 3520 | [29] (2015) |
CuS/TiO2 | Nanocomposite | Hydrothermal | Na2S, Na2SO3 | 1262 | [30] (2018) |
CuS/TiO2 | Nanocomposite | Hydrothermal | Methanol | 570 μmol h−1 | [31] (2013) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
Ag2S-ZnO@ZnS core–shell | Nanorods | Hydrothermal | Na2S, Na2SO3, NaCl | 6406 | [32] (2016) |
Ag2S/ZnS/carbon nanofiber | Nanofibers | Solid-state process and cation-exchange | Na2S, Na2SO3 | 224.9 μmol h−1 | [33] (2016) |
ZnS:Ag2S | Porous nanosheets | Thermal decomposition | Na2S, Na2SO3 | 104.9 | [34] (2014) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
ZnS@CdS-Te | p–n heterostructure | Microwave hydrothermal | Na2S·H2O, Na2SO3 | 592.5 | [35] (2018) |
ZnS/g-C3N4 | Nanocomposite | One-pot hydrothermal | Na2S, Na2SO3 | 713.68 | [36] (2018) |
Bi2S3/ZnS | Chloroplast-like structure | Solvothermal | Na2S, Na2SO3 | 176.24 | [37] (2017) |
CdS/ZnS | Core–shell nanoparticle composite | Solvothermal | Na2S, Na2SO3 | 239 μmol h−1mg−1 | [38] (2015) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
MoS2/graphene-CdS | Nanocomposite | Solution-chemistry | Lactic acid | 1800 μmol h−1 | [44] (2014) |
Nitrogen-doped graphene/ZnS | Nanorods | Thermal annealing of G-ZnS | Na2S, Na2SO3, NaCl | 1755.7 | [45] (2018) |
Graphene/ZnO-ZnS | Particle-on-sheet | Two-step heating | Glycerol | 1070 | [46] (2018) |
Graphene/CdS | Nanocomposite | Solvothermal | Lactic acid | 1120 μmol h−1 | [47] (2011) |
CdSe/CdS-Au-graphene | Nanocrystals | SILAR technique | Na2S, Na2SO3 | 3113 | [48] (2014) |
Graphene/ZnS | Nanocomposite | Hydrothermal | Na2S, Na2SO3, NaCl | 11,600 | [49] (2017) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
GO-CdS | Nanocomposite | Precipitation | Na2S, Na2SO3 | 314 µmol h−1 | [60] (2012) |
GO-CdS@TaON | Hybrid composites | Hydrothermal | Na2S, Na2SO3 | 633 µmol h−1 | [61] (2012) |
RGO-ZnxCd1−xS | Nanocomposite | Coprecipitation-hydrothermal | Na2S, Na2SO3 | 1824 | [62] (2012) |
ZnO-CdS/RGO | Heterostructure | Light irradiation-induced reduction | Na2S, Na2SO3 | 510 µmol h−1 | [63] (2014) |
NiS/ZnxCd1−xS/RGO | Ternary nanocomposite | Coprecipitation-hydrothermal | Na2, Na2SO3 | 205.9 µmol h−1 | [64] (2014) |
Photocatalyst | Noble Metal | Synthetic Method | Activity (μmol h−1 g−1) | Ref. (Year) |
---|---|---|---|---|
CdS/M/TiO2 | Au, Ag, Pt | Two-step photodeposition | - | [77] (2014) |
ZnS flower | Au | Deposition-precipitation | 3306 | [78] (2013) |
S,N-TiO2 | Au | Deposition-precipitation | 267.6 | [79] (2014) |
Cu2ZnSnS4 | Pt | - | 1020 | [80] (2014) |
CdS | Pt | Photodeposition | 8770 μmol h−1 | [81] (2009) |
CuS-TiO2 | Pt | Hydrothermal | 746 | [82] (2016) |
CdxCuyZn1−x−yS | Pt | Co-precipitation | 557 μmol h−1 | [83] (2008) |
In(0.1),Cu(x)-ZnS | Cu | Hydrothermal | 16.6 μmol h−1 | [84] (2016) |
CdS/TiO2 | Pt | Precipitation | Pt: 640 μmol h−1 | [85] (2007) |
ZnO-CdS | Pt | Modified hydrothermal | 6180 | [86] (2010) |
Photocatalyst | Dopant | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
CdS | Co | In-situ photodeposition | (NH4)2SO3 | 1299 μmol h−1 | [87] (2018) |
MoSG | Co | Solvothermal | TEOA-H2O | 11,450 | [88] (2019) |
ZnS-graphene | Ni | chemical vapor deposition | Na2S, Na2SO3, NaCl | 8683 | [89] (2015) |
Cd1−xZnxS | Ni | Hydrothermal | Na2S, Na2SO3 | 191 | [92] (2008) |
Staninless steel@ZnS | Ni | Solvothermal | Na2S, Na2SO3, NaCl | 14,600 | [93] (2014) |
Photocatalyst | Synthesis Method | Optimum Temperature (K) | Surface Area (m2/g) | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
Ce-doped ZnO/ZnS | precipitation | 673 | 51.25 | 1200 | [98] (2015) |
ZnS1−x−05yOx(OH)y(1:1)T1-673 | Co-precipitation | 373 | 72.4 | ~375 μmol | [99] (2009) |
CdS/TiO2 | Precipitation and sol–gel method | 773 | ~25 | ~620 μmol h−1 | [85] (2007) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
Ni/CdS/g-C3N4 | Hybrid system | NaBH4 reduction method | Triethanolamine | 1258.7 | [20] (2016) |
MoS2/CdS | Heterostructure | Precipitation | Lactic acid | ~540 | [23] (2008) |
CuS/TiO2 | Nanocomposite | Hydrothermal | Methanol | 570 μmol h−1 | [31] (2013) |
MoS2/graphene-CdS | Nanocomposite | Solution-chemistry | Lactic acid | 1800 μmol h−1 | [44] (2014) |
Graphene/ZnO-ZnS | Particle-on-sheet | Two-step heating | Glycerol | 1070 | [46] (2018) |
ZnIn2S4/g-C3N4 | Hetereojunction nanosheets | In-situ growth | Triethanolamine | 5.2 μmol h−1 | [101] (2016) |
CdS/CdSe | Nanorods | - | 2-propanol | 40 mmol/h-g | [102] (2010) |
Photocatalyst | Morphology | Synthetic Method | Sacrificial Agent | Activity (μmol h−1g−1) | Ref. (Year) |
---|---|---|---|---|---|
ZnIn2S4/g-C3N4 | Heterojunction nanosheets | In-situ growth | Triethanolamine | 5.2 μmol h−1 | [104] (2016) |
CdS/CdSe | Nanorods | - | 2-propanol | 40 mmol h−1g−1 | [102] (2010) |
CdS/Bi2S3 | Nanowires | In-situ growth | H2S, KOH | 4560 | [103] (2016) |
CaIn2S4 | Mesoporous monoclinic with surface nanostructure | High temperature sulfurization | Na2S, Na2SO3 | 3.02 mmol h−1g−1 | [106] (2018) |
CaIn2S4/g-C3N4 | Heterojunction nanocomposite | Two-step method | Na2S, Na2SO3 | 102 | [107] (2014) |
ZnIn2S4 | 3D hierarchical persimmon-like shape | Oleylamine (OA)-assisted solvothermal | Na2S, Na2SO3 | 220.45 μmol h−1 | [108] (2012) |
Ag2S-coupled ZnO@ZnS | Core–shell | Sulfidation | Na2S, Na2SO3, NaCl | 5310 | [32] (2016) |
NiCo2O4@ZnS | Core–shell | Solvothermal | Na2S, Na2SO3, NaCl | 3900 | [72] (2015) |
Fe3O4@ZnS | Core–shell | Solvothermal | Na2S, Na2SO3, NaCl | 880 | [72] (2015) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.L.; Chang, C.-J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalysts 2019, 9, 457. https://doi.org/10.3390/catal9050457
Lee SL, Chang C-J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalysts. 2019; 9(5):457. https://doi.org/10.3390/catal9050457
Chicago/Turabian StyleLee, Sher Ling, and Chi-Jung Chang. 2019. "Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production" Catalysts 9, no. 5: 457. https://doi.org/10.3390/catal9050457
APA StyleLee, S. L., & Chang, C. -J. (2019). Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalysts, 9(5), 457. https://doi.org/10.3390/catal9050457