Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Photocatalysts
2.2. Adsorption Experiment
2.3. Photocatalytic Degradation of Sulfamethoxazole
2.3.1. Efficiency Comparison of Modified and Non-Modified TiO2
2.3.2. Effect of Surface Modification Level
2.3.3. Effect of Initial Concentration of Catalyst
2.3.4. Effect of Water Matrix and Sunlight in Germany and Portugal
2.4. Mineralization
2.5. Transformation Products (TPs)
2.6. Ecotoxicity
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Characterization of Photocatalysts
3.3. Adsorption Experiment
3.4. Sunlight Conditions
3.5. Photocatalytic Degradation Experiments
3.6. Analytical Methods
3.6.1. Analysis by Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS)
3.6.2. Analysis by High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD)
3.6.3. Determination of Dissolved Organic Carbon (DOC)
3.7. Kinetics Description
3.8. Identification of TPs by LC-MS/MS
3.9. Toxicity Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 2012, 421-422, 173–183. [Google Scholar] [CrossRef]
- Bilińska, L.; Gmurek, M.; Ledakowicz, S. Textile wastewater treatment by aops for brine reuse. Process Saf. Environ. Prot. 2017, 109, 420–428. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009, 43, 1513–1522. [Google Scholar] [CrossRef]
- Borowska, E.; Felis, E.; Żabczyński, S. Degradation of iodinated contrast media in aquatic environment by means of UV, UV/TiO2 process, and by activated sludge. Water Air Soil Pollut. 2015, 226, 151. [Google Scholar] [CrossRef]
- Carbajo, J.; Jiménez, M.; Miralles, S.; Malato, S.; Faraldos, M.; Bahamonde, A. Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chem. Eng. J. 2016, 291, 64–73. [Google Scholar] [CrossRef]
- Mena, E.; Rey, A.; Beltrán, F.J. TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 2018, 339, 369–380. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Lan, Y.; Lu, Y.; Ren, Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2013, 2, 1031–1045. [Google Scholar] [CrossRef]
- Ribao, P.; Corredor, J.; Rivero, M.J.; Ortiz, I. Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard. Mater. 2018. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef]
- Grabowska, E.; Marchelek, M.; Klimczuk, T.; Trykowski, G.; Zaleska-Medynska, A. Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–Vis and visible light. J. Mol. Catal. A 2016, 423, 191–206. [Google Scholar] [CrossRef]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473–486. [Google Scholar] [CrossRef]
- Sung-Suh, H.M.; Choi, J.R.; Hah, H.J.; Koo, S.M.; Bae, Y.C. Comparison of ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and uv light irradiation. J. Photochem. Photobiol. A 2004, 163, 37–44. [Google Scholar] [CrossRef]
- Chen, H.-W.; Ku, Y.; Kuo, Y.-L. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res. 2007, 41, 2069–2078. [Google Scholar] [CrossRef]
- Guo, X.-W.; Hao, C.-H.; Wang, C.-Y.; Sarina, S.; Guo, X.-N.; Guo, X.-Y. Visible light-driven photocatalytic Heck reaction over carbon nanocoil supported Pd nanoparticles. Catal. Sci. Technol. 2016, 6, 7738–7743. [Google Scholar] [CrossRef]
- Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J.A.; Bechstein, R.; Kiely, C.J.; Hutchings, G.J.; Flemming, B. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles. ACS Nano 2012, 6, 6284–6292. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.F.; Leal, I.; Bednarczyk, K.; Gmurek, M.; Stelmachowski, M.; Zaleska-Medynska, A.; Quinta-Ferreira, M.E.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Detoxification of parabens using UV-A enhanced by noble metals—TiO2 supported catalysts. J. Environ. Chem. Eng. 2017, 5, 3065–3074. [Google Scholar] [CrossRef]
- Foszpańczyk, M.; Bednarczyk, K.; Drozdek, E.; Martins, R.C.; Ledakowicz, S.; Gmurek, M. Comparison of photocatalytic and photosensitized oxidation of paraben aqueous solutions under sunlight. Water Air Soil Pollut. 2018, 229, 362. [Google Scholar] [CrossRef]
- Oros-Ruiz, S.; Zanella, R.; Prado, B. Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J. Hazard. Mater. 2013, 263, 28–35. [Google Scholar] [CrossRef]
- Ternes, T.; Joss, A. Human Pharmaceuticals, Hormones and Fragrances. The Challenge of Micropollutants in Urban Water Management; IWA Publishing: London, UK, 2006. [Google Scholar]
- Ioannidou, E.; Frontistis, Z.; Antonopoulou, M.; Venieri, D.; Konstantinou, I.; Kondarides, D.I.; Mantzavinos, D. Solar photocatalytic degradation of sulfamethoxazole over tungsten—Modified TiO2. Chem. Eng. J. 2017, 318, 143–152. [Google Scholar] [CrossRef]
- Chiang, L.-F.; Doong, R.-A. Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition. Sep. Purif. Technol. 2015, 156, 1003–1010. [Google Scholar] [CrossRef]
- Zanella, R.; Avella, E.; Ramírez-Zamora, R.M.; Castillón-Barraza, F.; Durán-Álvarez, J.C. Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environ. Technol. 2018, 39, 2353–2364. [Google Scholar] [CrossRef]
- Bao, Y.; Lim, T.-T.; Zhong, Z.; Wang, R.; Hu, X. Acetic acid-assisted fabrication of hierarchical flower-like Bi2O3 for photocatalytic degradation of sulfamethoxazole and rhodamine B under solar irradiation. J. Colloid Interface Sci. 2017, 505, 489–499. [Google Scholar] [CrossRef]
- Liu, S.-H.; Wei, Y.-S.; Lu, J.-S. Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts. Chemosphere 2016, 154, 118–123. [Google Scholar] [CrossRef]
- Grilla, E.; Petala, A.; Frontistis, Z.; Konstantinou, I.K.; Kondarides, D.I.; Mantzavinos, D. Solar photocatalytic abatement of sulfamethoxazole over Ag3PO4/WO3 composites. Appl. Catal. B 2018, 231, 73–81. [Google Scholar] [CrossRef]
- Leong, K.H.; Chu, H.Y.; Ibrahim, S.; Saravanan, P. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J. Nanotechnol. 2015, 6, 428–437. [Google Scholar] [CrossRef]
- Guayaquil-Sosa, J.F.; Serrano-Rosales, B.; Valadés-Pelayo, P.J.; de Lasa, H. Photocatalytic hydrogen production using mesoporous TiO2 doped with pt. Appl. Catal. B 2017, 211, 337–348. [Google Scholar] [CrossRef]
- Guayaquil-Sosa, J.F.; Calzada, A.; Serrano, B.; Escobedo, S.; De Lasa, H. Hydrogen production via water dissociation using Pt–TiO2 photocatalysts: An oxidation–reduction network. Catalysts 2017, 7, 324. [Google Scholar] [CrossRef]
- Ibhadon, O.A.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Bednarczyk, K.; Stelmachowski, M.; Gmurek, M. The influence of process parameters on photocatalytic hydrogen production. Environ. Prog. Sustain. Energy 2019, 38, 680–687. [Google Scholar] [CrossRef]
- Orton, J. The Story of Semiconductors; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Wang, Y.; Lai, Q.; Zhang, F.; Shen, X.; Fan, M.; He, Y.; Ren, S. High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles. RSC Adv. 2014, 4, 44442–44451. [Google Scholar] [CrossRef]
- Michaelson, H.B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef] [Green Version]
- García-Zaleta, D.S.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; García-Murillo, A.; Silva-Rodrigo, R.; López González, R. Influence of phases content on Pt/TiO2, Pd/TiO2 catalysts for degradation of 4-chlorophenol at room temperature. J. Nanomater. 2016, 2016, 15. [Google Scholar]
- Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 2004, 38, 3001–3008. [Google Scholar] [CrossRef]
- Abellán, M.N.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B 2007, 74, 233–241. [Google Scholar] [CrossRef]
- Gmurek, M.; Horn, H.; Majewsky, M. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri. Sci. Total Environ. 2015, 538, 58–63. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Trautmann, N.; Krasny, M. Composting in the Classroom; Nature Science Foundation; Cornell Waste Management Institute; Cornell Center for the Environment: New York, NY, USA, 1997.
- Majewsky, M.; Wagner, D.; Delay, M.; Bräse, S.; Yargeau, V.; Horn, H. Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide tps modified at the para position. Chem. Res. Toxicol. 2014, 27, 1821–1828. [Google Scholar] [CrossRef]
- Borowska, E.; Felis, E.; Kalka, J. Oxidation of benzotriazole and benzothiazole in photochemical processes: Kinetics and formation of transformation products. Chem. Eng. J. 2016, 304, 852–863. [Google Scholar] [CrossRef]
- Velegraki, T.; Hapeshi, E.; Fatta-Kassinos, D.; Poulios, I. Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Appl. Catal. B 2015, 178, 2–11. [Google Scholar] [CrossRef]
qmax 10−3 [mgSMX/gcat] | KL [dm3/mg] | R2 | |
---|---|---|---|
TiO2 | 2.82 ± 0.39 | 1.454 ± 0.412 | 0.89 |
Pt/TiO2 | 6.31 ± 0.43 | 0.956 ± 0.043 | 0.93 |
Pd/TiO2 | 21.60 ± 6.80 | 1.562 ± 0.830 | 0.97 |
Aim of the Experiment | Type of Catalyst | Surface Modification Level (%) | Exact Concentration of Catalyst (mg/L) | Pseudo-First Order Rate Constant k′ (10−2 1/min) | Half-Life t1/2 (min) |
---|---|---|---|---|---|
Effect of TiO2 surface modification with noble metal | TiO2 | - | 53.2 | 0.2 ± 0.1 | 284.5 ± 64.4 |
Pd/TiO2 | 1.0% | 56.7 | 52.1 ± 5.1 | 1.3 ± 0.2 | |
Pt/TiO2 | 1.0% | 46.7 | 7.6 ± 0.1 | 9.1 ± 0.1 | |
Effect of surface modification level | Pd/TiO2 | 0.1% | 29.3 | 7.5 ± 0.8 | 9.3 ± 1.1 |
0.5% | 27.0 | 11.0 ± 1.0 | 6.4 ± 0.9 | ||
1.0% | 30.0 | 50.6 ± 3.0 | 1.4 ± 0.1 | ||
Pt/TiO2 | 0.1% | 27.3 | 2.0 ± 0.1 | 33.8 ± 1.2 | |
0.5% | 24.1 | 2.1 ± 0.1 | 33.3 ± 2.5 | ||
1.0% | 28.7 | 2.0 ± 0.1 | 34.2 ± 0.9 | ||
Effect of catalyst concentration | Pd/TiO2 | 1.0% | 23.5 | 14.1 ± 1.5 | 5.0 ± 0.1 |
1.0% | 56.8 | 52.1 ± 5.1 | 1.3 ± 0.2 | ||
1.0% | 76.8 | 43.9 ± 3.7 | 1.6 ± 0.2 | ||
1.0% | 114.4 | 46.2 ± 4.3 | 1.5 ± 0.2 | ||
Pt/TiO2 | 1.0% | 26.5 | 3.8 ± 0.2 | 18.5 ± 1.3 | |
1.0% | 46.7 | 7.6 ± 0.1 | 9.1 ± 0.1 | ||
1.0% | 81.3 | 14.9 ± 0.3 | 4.7 ± 0.2 | ||
1.0% | 117.1 | 20.3 ± 0.4 | 3.4 ± 0.1 |
Catalysts | O (%) | Ti (%) | C (%) | Pt Content (atom%) | Pd Content (atom%) |
---|---|---|---|---|---|
Pt/TiO2_0.1% | 48.57 ± 0.43 | 21.11 ± 0.17 | 30.25 ± 0.59 | 0.08 ± 0.01 | - |
Pt/TiO2_0.5% | 48.70 ± 0.55 | 20.73 ± 0.01 | 30.46 ± 0.54 | 0.13 ± 0.01 | - |
Pt/TiO2_1% | 46.74 ± 0.27 | 18.13 ± 0.04 | 34.23 ± 0.13 | 0.61 ± 0.01 | - |
Pd/TiO2_0.5% | 55.88 ± 0.05 | 23.66 ± 0.62 | 20.24 ± 0.66 | - | 0.23 ± 0.01 |
Pd/TiO2_1% | 54.95 ± 0.41 | 23.40 ± 0.32 | 20.95 ± 0.05 | - | 0.70 ± 0.02 |
Country | Type of Matrix | Type of Catalyst | Pseudo-First Order Rate Constant (10−2 1/min) | Half-Life Time (min) |
---|---|---|---|---|
Germany | Aqueous solution | Pd/TiO2 | 14.1 ± 1.5 | 5.0 ± 0.1 |
Pt/TiO2 | 3.8 ± 0.2 | 18.5 ± 1.3 | ||
Alb river (TOC = 5.5 mg/L) | Pd/TiO2 | 2.1 ± 0.1 | 33.3 ± 0.7 | |
Pt/TiO2 | 0.8 * | 86.6 * | ||
Portugal | Aqueous solution | Pd/TiO2 | 12.7 ± 0.2 | 5.4 ± 0.1 |
Pt/TiO2 | 2.4 ± 0.2 | 27.4 ± 1.4 | ||
Mondego river (TOC = 6.4 mg/L) | Pd/TiO2 | 4.4 ± 0.2 | 15.9 ± 1.2 | |
Pt/TiO2 | 1.5 ± 0.2 | 47.6 ± 6.9 |
Type of Solution | Germination Index (± SE) [%] |
---|---|
Initial SMX solution | 43 (±4) |
Solution after treatment with Pd/TiO2 | 93 (±10) |
Solution after treatment with Pt/TiO2 | 110 (±16) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska, E.; Gomes, J.F.; Martins, R.C.; Quinta-Ferreira, R.M.; Horn, H.; Gmurek, M. Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts 2019, 9, 500. https://doi.org/10.3390/catal9060500
Borowska E, Gomes JF, Martins RC, Quinta-Ferreira RM, Horn H, Gmurek M. Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts. 2019; 9(6):500. https://doi.org/10.3390/catal9060500
Chicago/Turabian StyleBorowska, Ewa, João F. Gomes, Rui C. Martins, Rosa M. Quinta-Ferreira, Harald Horn, and Marta Gmurek. 2019. "Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals" Catalysts 9, no. 6: 500. https://doi.org/10.3390/catal9060500
APA StyleBorowska, E., Gomes, J. F., Martins, R. C., Quinta-Ferreira, R. M., Horn, H., & Gmurek, M. (2019). Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts, 9(6), 500. https://doi.org/10.3390/catal9060500