Porosity Design of Shaped Zeolites for Improved Catalyst Lifetime in the Methanol-to-Hydrocarbons Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Properties
2.2. Catalytic Activity
3. Experimental
3.1. Catalysts and Materials
3.2. Characterization
3.3. Methanol-to-Hydrocarbons (MTH) Reaction
3.4. Toluene Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2419. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Hölderich, W.F. Industrial Application of Solid Acid-Base Catalysts. Appl. Catal. A 1999, 181, 399–434. [Google Scholar] [CrossRef]
- Uguina, M.A.; Sotelo, J.L.; Serrano, D.P. Toluene Disproportionation over ZSM-5 Zeolite. Effects of Crystal Size, Silicon-to-Aluminum Ratio, Activation Method and Pelletization. Appl. Catal. 1991, 76, 183–198. [Google Scholar] [CrossRef]
- Martin, A.; Berndt, H.; Lohse, U.; Wolf, U. Effect of Si: Al Ratio and Type of Binder on the Catalytic Properties of HZSM-5 Catalysts. J. Chem. Soc. Faraday Trans. 1993, 89, 1277–1282. [Google Scholar] [CrossRef]
- Romero, M.D.; Calles, J.A.; Rodríguez, A.; De Lucas, A. Acidity Modification during the Agglomeration of ZSM-5 with Montmorillonite. Microporous Mater. 1997, 9, 221–228. [Google Scholar] [CrossRef]
- Freiding, J.; Patcas, F.C.; Kraushaar-Czarnetzki, B. Extrusion of Zeolites: Properties of Catalysts with a Novel Aluminium Phosphate Sintermatrix. Appl. Catal. A 2007, 328, 210–218. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, H.K.; Ihm, S.K. Influence of Catalyst Binders on the Acidity and Catalytic Performance of HZSM-5 Zeolites for Methanol-to-Propylene (MTP) Process: Single and Binary Binder System. Top. Catal. 2010, 53, 247–253. [Google Scholar] [CrossRef]
- Freiding, J.; Kraushaar-Czarnetzki, B. Novel Extruded Fixed-Bed MTO Catalysts with High Olefin Selectivity and High Resistance against Coke Deactivation. Appl. Catal. A 2011, 391, 254–260. [Google Scholar] [CrossRef]
- Mitchell, S.; Michels, N.L.; Kunze, K.; Pérez-Ramírez, J. Visualization of Hierarchically Structured Zeolite Bodies from Macro to Nano Length Scales. Nat. Chem. 2012, 4, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Bingre, R.; Louis, B.; Nguyen, P. An Overview on Zeolite Shaping Technology and Solutions to Overcome Diffusion Limitations. Catalysts 2018, 8, 163. [Google Scholar] [CrossRef]
- Verkleij, S.P.; Whiting, G.T.; Esclapez, S.P.; Mertens, M.M.; Bons, A.J.; Burgers, M.; Weckhuysen, B.M. Operando Micro-Spectroscopy on ZSM-5 Containing Extrudates during the Oligomerization of 1-Hexene. Catal. Sci. Technol. 2018, 8, 2175–2185. [Google Scholar] [CrossRef]
- Hernando, H.; Ochoa-Hernández, C.; Shamzhy, M.; Moreno, I.; Fermoso, J.; Pizarro, P.; Coronado, J.M.; Čejka, J.; Serrano, D.P. The Crucial Role of Clay Binders in the Performance of ZSM-5 Based Materials for Biomass Catalytic Pyrolysis. Catal. Sci. Technol. 2019, 9, 789–802. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Suzuki, Y.; Mukti, R.R.; Suzuki, T.; Sugita, K.; Itabashi, K.; Shimojima, A.; Okubo, T. Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem. Int. Ed. 2013, 52, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Fischer, A.; Goebel, C.; Thomas, A. A Sustainable Template for Mesoporous Zeolite Synthesis. J. Am. Chem. Soc. 2014, 136, 2715–2718. [Google Scholar] [CrossRef] [PubMed]
- Verboekend, D.; Pérez-Ramírez, J. Towards a Sustainable Manufacture of Hierarchical Zeolites. ChemSusChem 2014, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Nuttens, N.; Verboekend, D.; Deneyer, A.; Van Aelst, J.; Sels, B.F. Potential of Sustainable Hierarchical Zeolites in the Valorization of α-Pinene. ChemSusChem 2015, 8, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, Z.; Huang, L.; Zhang, H.; Song, K.; Wang, L.; Shi, Z.; Ma, J.; Zhuang, Y.; Shen, W. Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catal. 2015, 5, 2548–2558. [Google Scholar] [CrossRef]
- Groen, J.C.; Jansen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. J. Phys. Chem. B 2004, 108, 13062–13065. [Google Scholar] [CrossRef]
- Suzuki, K.; Aoyagi, Y.; Katada, N.; Choi, M.; Ryoo, R.; Niwa, M. Acidity and Catalytic Activity of Mesoporous ZSM-5 in Comparison with Zeolite ZSM-5, Al-MCM-41 and Silica-Alumina. Catal. Today 2008, 132, 38–45. [Google Scholar] [CrossRef]
- Louis, B.; Ocampo, F.; Yun, H.S.; Tessonnier, J.P.; Pereira, M.M. Hierarchical Pore ZSM-5 Zeolite Structures: From Micro- to Macro-Engineering of Structured Catalysts. Chem. Eng. J. 2010, 161, 397–402. [Google Scholar] [CrossRef]
- Yoo, W.C.; Zhang, X.; Tsapatsis, M.; Stein, A. Synthesis of Mesoporous ZSM-5 Zeolites through Desilication and Re-Assembly Processes. Microporous Mesoporous Mater. 2012, 149, 147–157. [Google Scholar] [CrossRef]
- Ivanova, I.I.; Knyazeva, E.E. Micro-Mesoporous Materials Obtained by Zeolite Recrystallization: Synthesis, Characterization and Catalytic Applications. Chem. Soc. Rev. 2013, 42, 3671–3688. [Google Scholar] [CrossRef] [PubMed]
- Milina, M.; Mitchell, S.; Michels, N.L.; Kenvin, J.; Pérez-Ramírez, J. Interdependence between Porosity, Acidity, and Catalytic Performance in Hierarchical ZSM-5 Zeolites Prepared by Post-Synthetic Modification. J. Catal. 2013, 308, 398–407. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Qin, L.; Li, H.; Chen, Y.; Liu, B. Synthesis and Catalytic Cracking Performance of Mesoporous Zeolite Y. Catal. Commun. 2016, 73, 98–102. [Google Scholar] [CrossRef]
- Zhang, W.; Ming, W.; Hu, S.; Qin, B.; Ma, J.; Li, R. A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB. Materials 2018, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Gueudré, L.; Milina, M.; Mitchell, S.; Pérez-Ramírez, J. Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity. Adv. Funct. Mater. 2014, 24, 209–219. [Google Scholar] [CrossRef]
- Michels, N.L.; Mitchell, S.; Milina, M.; Kunze, K.; Krumeich, F.; Marone, F.; Erdmann, M.; Marti, N.; Pérez-Ramírez, J. Hierarchically Structured Zeolite Bodies: Assembling Micro-, Meso-, and Macroporosity Levels in Complex Materials with Enhanced Properties. Adv. Funct. Mater. 2012, 22, 2509–2518. [Google Scholar] [CrossRef]
- Michels, N.L.; Mitchell, S.; Pérez-Ramírez, J. Effects of Binders on the Performance of Shaped Hierarchical MFI Zeolites in Methanol-to-Hydrocarbons. ACS Catal. 2014, 4, 2409–2417. [Google Scholar] [CrossRef]
- Suppiah, S. Supported High Silica Zeolites. U.S. Patent 5,157,005, 20 October 1992. [Google Scholar]
- Abe, F.; Noda, K. Heater and Catalytic Converter. U.S. Patent 5,538,698, 23 July 1996. [Google Scholar]
- Dessau, R.M.; Grasselli, R.K.; Lago, R.M. Processes for Converting Feedstock Organic Compounds. U.S. Patent 5,316,661, 31 May 1994. [Google Scholar]
- Grasselli, R.K.; Lago, R.M.; Socha, R.F.; Tsikoyiannis, J.G. NOx Abatement Process. U.S. Patent 5,374,410, 20 December 1994. [Google Scholar]
- Zamaro, J.M.; Ulla, M.A.; Miró, E.E. Zeolite Washcoating onto Cordierite Honeycomb Reactors for Environmental Applications. Chem. Eng. J. 2005, 106, 25–33. [Google Scholar] [CrossRef]
- Buciuman, F.C.; Kraushaar-Czarnetzki, B. Preparation and Characterization of Ceramic Foam Supported Nanocrystalline Zeolite Catalysts. Catal. Today 2001, 69, 337–342. [Google Scholar] [CrossRef]
- Ivanova, S.; Louis, B.; Madani, B.; Tessonnier, J.P.; Ledoux, M.J.; Pham-Huu, C. ZSM-5 Coatings on β-SiC Monoliths: Possible New Structured Catalyst for the Methanol-to-Olefins Process. J. Phys. Chem. C 2007, 111, 4368–4374. [Google Scholar] [CrossRef]
- Mitra, B.; Kunzru, D. Washcoating of Different Zeolites on Cordierite Monoliths. J. Am. Ceram. Soc. 2008, 91, 64–70. [Google Scholar] [CrossRef]
- Haden, W.L.; Metuchen, J.; Dzierzanowski, F.J. Method for Making Synthetic Zeolitic Material. U.S. Patent 2,992,068, 11 July 1961. [Google Scholar]
- Taggart, E.; Ribaud, G. Process for Producing Molecular Sieve Bodies. U.S. Patent 3,119,659, 28 January 1964. [Google Scholar]
- Shimizu, S.; Kiyozumi, Y.; Maeda, K.; Mizukami, F.; Pál-Borbély, G.; Magdolna Mihályi, R.; Beyer, H.K. Transformation of Intercalated Layered Silicates to Zeolites in the Solid State. Adv. Mater. 1996, 8, 759–762. [Google Scholar] [CrossRef]
- Kiricsi, I.; Shimizu, S.; Kiyozumi, Y.; Toba, M.; Niwa, S.I.; Mizukami, F. Catalytic Activity of a Zeolite Disc Synthesized through Solid-State Reactions. Microporous Mesoporous Mater. 1998, 21, 453–459. [Google Scholar] [CrossRef]
- Rao, P.H.P.; Ueyama, K.; Matsukata, M. Crystallization of High Silica BEA by Dry Gel Conversion. Appl. Catal. A 1998, 166, 97–103. [Google Scholar]
- Tosheva, L.; Valtchev, V.; Sterte, J. Silicalite-1 Containing Microspheres Prepared Using Shape-Directing Macro-Templates. Microporous Mesoporous Mater. 2000, 35–36, 621–629. [Google Scholar] [CrossRef]
- You, Z.; Liu, G.; Wang, L.; Zhang, X. Binderless Nano-HZSM-5 Zeolite Coatings Prepared through Combining Washcoating and Dry-Gel Conversion (DGC) Methods. Microporous Mesoporous Mater. 2013, 170, 235–242. [Google Scholar] [CrossRef]
- Mańko, M.; Vittenet, J.; Rodriguez, J.; Cot, D.; Mendret, J.; Brosillon, S.; Makowski, W.; Galarneau, A. Synthesis of Binderless Zeolite Aggregates (SOD, LTA, FAU) Beads of 10, 70 Μm and 1 Mm by Direct Pseudomorphic Transformation. Microporous Mesoporous Mater. 2013, 176, 145–154. [Google Scholar] [CrossRef]
- Yue, M.B.; Yang, N.; Jiao, W.Q.; Wang, Y.M.; He, M.Y. Dry-Gel Synthesis of Shaped Binderless Zeolites Composed of Nanosized ZSM-5. Solid State Sci. 2013, 20, 1–7. [Google Scholar] [CrossRef]
- Fakin, T.; Ristić, A.; Mavrodinova, V.; Zabukovec Logar, N. Highly Crystalline Binder-Free ZSM-5 Granules Preparation. Microporous Mesoporous Mater. 2015, 213, 108–117. [Google Scholar] [CrossRef]
- Bingre, R.; Vincent, B.; Wang, Q.; Nguyen, P.; Louis, B. Assessment of the Improvement of Effective Diffusivity over Technical Zeolite Bodies by Different Techniques. J. Phys. Chem. C 2019, 123, 637–643. [Google Scholar] [CrossRef]
- Fulvio, P.F.; Brosey, R.I.; Jaroniec, M. Synthesis of Mesoporous Alumina from Boehmite in the Presence of Triblock Copolymer. ACS Appl. Mater. Interfaces 2010, 2, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Bleta, R.; Alphonse, P.; Pin, L.; Gressier, M.; Menu, M.-J. An Efficient Route to Aqueous Phase Synthesis of Nanocrystalline γ-Al2O3 with High Porosity: From Stable Boehmite Colloids to Large Pore Mesoporous Alumina. J. Colloid Interface Sci. 2012, 367, 120–128. [Google Scholar] [CrossRef]
- Cardoso, C.S.; Licea, Y.E.; Huang, X.; Willinger, M.; Louis, B.; Pereira, M.M. Improving Textural Properties of γ-Alumina by Using Second Generation Biomass in Conventional Hydrothermal Method. Microporous Mesoporous Mater. 2015, 207, 134–141. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, A.; Wang, X.; Gao, P.; Wang, X.; Zhang, T. Synthesis, Characterization and Catalytic Applications of Mesoporous γ-Alumina from Boehmite Sol. Microporous Mesoporous Mater. 2008, 111, 323–333. [Google Scholar] [CrossRef]
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Physical Properties—Determination of Surface Area. In Handbook of Heterogeneous Catalysis, 2nd ed.; Wiley VCH: Weinheim, Germany, 2009; Volume 1, pp. 723–726. [Google Scholar]
- Hidalgo, C.V.; Itoh, H.; Hattori, T.; Niwa, M.; Murakami, Y. Measurement of the Acidity of Various Zeolites by Desorption of Ammonia. J. Catal. 1984, 85, 362–369. [Google Scholar] [CrossRef]
- Katada, N.; Igi, H.; Kim, J.-H. Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. J. Phys. Chem. B 1997, 101, 5969–5977. [Google Scholar] [CrossRef]
- Zholobenko, V.L.; Makarova, M.A.; Dwyer, J. Inhomogeneity of Bronsted Acid Sites in H-Mordenite. J. Phys. Chem. 1993, 97, 5962–5964. [Google Scholar] [CrossRef]
- Flego, C.; Kiricsi, I.; Perego, C.; Bellussi, G. The Origin of the Band at 1462 cm-1 Generally Appearing upon Desorption of Pyridine from Acidic Solids. Steps towards a More Comprehensive Understanding. Catal. Lett. 1995, 35, 125–133. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Vµ (cm3/g) | Vp (cm3/g) | Vtotal intrusion (mL/g) | Porosity (%) |
---|---|---|---|---|---|
Boeh_ext | 237 | - | 0.36 | - | - |
CBV3020E | 369 | 0.11 | 0.23 | - | - |
Catal_ref | 337 | 0.09 | 0.25 | 0.43 | 43 |
Catal_5PA1 | 347 | 0.09 | 0.25 | 0.58 | 52 |
Catal_10PA1 | 344 | 0.09 | 0.25 | 0.65 | 54 |
Catal_20PA1 | 348 | 0.09 | 0.25 | 0.78 | 58 |
Catal_PA2 | 348 | 0.09 | 0.32 | 0.81 | 60 |
Sample | SC3H6 (%) | SC2-C4 (%) | SC5+ (%) |
---|---|---|---|
CBV3020E | 25 | 65 | 33 |
Catal_ref | 27 | 70 | 29 |
Catal_10PA1 | 26 | 68 | 30 |
Catal_PA2 | 24 | 64 | 33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bingre, R.; Li, R.; Wang, Q.; Nguyen, P.; Onfroy, T.; Louis, B. Porosity Design of Shaped Zeolites for Improved Catalyst Lifetime in the Methanol-to-Hydrocarbons Reaction. Catalysts 2019, 9, 545. https://doi.org/10.3390/catal9060545
Bingre R, Li R, Wang Q, Nguyen P, Onfroy T, Louis B. Porosity Design of Shaped Zeolites for Improved Catalyst Lifetime in the Methanol-to-Hydrocarbons Reaction. Catalysts. 2019; 9(6):545. https://doi.org/10.3390/catal9060545
Chicago/Turabian StyleBingre, Rogéria, Renna Li, Qiang Wang, Patrick Nguyen, Thomas Onfroy, and Benoît Louis. 2019. "Porosity Design of Shaped Zeolites for Improved Catalyst Lifetime in the Methanol-to-Hydrocarbons Reaction" Catalysts 9, no. 6: 545. https://doi.org/10.3390/catal9060545
APA StyleBingre, R., Li, R., Wang, Q., Nguyen, P., Onfroy, T., & Louis, B. (2019). Porosity Design of Shaped Zeolites for Improved Catalyst Lifetime in the Methanol-to-Hydrocarbons Reaction. Catalysts, 9(6), 545. https://doi.org/10.3390/catal9060545