Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Defective MFI Zeolites Supported by Zn–Sn–Pt with Different SiO2/Al2O3 Ratios
2.2. Metallicity of ZnSnPt Lewis Acid Sites over Defective MFI Zeolites with Different SiO2/Al2O3 Ratios
2.3. Acidity of ZnSnPt Lewis Acid Sites over Defective MFI Zeolites with Different SiO2/Al2O3 Ratios
2.4. Catalytic Performance of Zn–Sn–Pt Modified Defective MFI Zeolites with Different SiO2/Al2O3 Ratios
3. Experimental Section
3.1. Materials
3.2. Characterization
3.3. Propane Transformation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Weitkamp, J.; Traa, Y. Isobutane/butene alkylation on solid catalysts. Where do we stand? Catal. Today 1999, 49, 193–199. [Google Scholar] [CrossRef]
- Barrer, R.M.; Makki, M.B. Molecular sieve sorbents from clinoptilolite. Can. J. Chem. 1964, 42, 1481–1487. [Google Scholar] [CrossRef]
- Bordiga, S.; Ugliengo, P.; Damina, A.; Lamberti, C.; Spoto, G.; Zecchin, A.; Spano, G.; Buzzoni, R.; Dalloro, L.; Rivetti, F. Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: Vibrational properties and theoretical modelling. Top. Catal. 2001, 15, 43–52. [Google Scholar] [CrossRef]
- Heitmann, G.P.; Dahlhoff, G.; Niederer, J.P.M.; Hölderich, W.F. Active Sites of a [B]-ZSM-5 Zeolite Catalyst for the Beckmann Rearrangement of Cyclohexanone Oxime to Caprolactam. J. Catal. 2000, 194, 122–129. [Google Scholar] [CrossRef]
- Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. Silicalite characterization. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes. J. Phys. Chem. 1992, 96, 4985–4990. [Google Scholar] [CrossRef]
- Jia, Y.M.; Wang, J.W.; Zhang, K.; Liu, S.B.; Chen, G.L.; Yang, Y.F.; Ding, C.M.; Liu, P. Catalytic conversion of methanol to aromatics over nanosized HZSM-5 zeolite modified by ZnSiF6·6H2O. Catal. Sci. Technol. 2012, 7, 1776–1791. [Google Scholar] [CrossRef]
- Bleken, F.L.; Barbera, K.; Bonino, F.; Olsbye, U.; Lillerud, K.P.; Bordiga, S.; Beato, P.; Janssens, T.V.W.; Svelle, S. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. J. Catal. 2013, 307, 62–73. [Google Scholar] [CrossRef]
- Heitmann, G.P.; Dahlhoff, G.; Holderich, W.F. Catalytically active sites for the beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 1999, 186, 12–19. [Google Scholar] [CrossRef]
- Chen, N.; Yan, T.Y. M2 forming-a process for aromatization of light hydrocarbons. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 151–155. [Google Scholar] [CrossRef]
- Ono, Y. Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites. Catal. Rev. 2006, 34, 179–226. [Google Scholar] [CrossRef]
- Biscardi, J.A.; Iglesia, E. Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catal. Today 1996, 31, 207–231. [Google Scholar] [CrossRef]
- Vermeiren, W.; Gilson, J.P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top. Catal. 2009, 52, 1131–1161. [Google Scholar] [CrossRef]
- Kokotailo, G.T.; Lawton, S.L.; Olson, D.H. Structure of synthetic zeolite ZSM-5. Nature 1978, 272, 437–438. [Google Scholar] [CrossRef]
- Venuto, P.B. Organic catalysis over zeolites: A perspective on reaction paths within micropores. Microporous Mater. 1994, 2, 297–411. [Google Scholar] [CrossRef]
- Guisnet, M.; Gnep, N.S. Aromatization of short chain alkanes on zeolite catalysts. Appl. Catal. A Gen. 1992, 89, 1–30. [Google Scholar] [CrossRef]
- Ausavasukhi, A.; Sooknoi, T. Tunable activity of [Ga]HZSM-5 with H2 treatment: Ethane dehydrogenation. Catal. Commun. 2014, 45, 63–68. [Google Scholar] [CrossRef]
- Schreiber, M.W.; Plaisance, C.P.; Baumgartl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J.A. Lewis-Bronsted Acid Pairs in Ga/H-ZSM-5 To Catalyze Dehydrogenation of Light Alkanes. J. Am. Chem. Soc. 2018, 140, 4849–4859. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, G.; Bhan, A.; Delgass, W.N. Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts. J. Catal. 2010, 271, 370–385. [Google Scholar] [CrossRef]
- Bhan, A.; Nicholas Delgass, W. Propane Aromatization over HZSM-5 and Ga/HZSM-5 Catalysts. Catal. Rev. 2008, 50, 19–151. [Google Scholar] [CrossRef]
- Mole, T.; Anderson, J.R.; Creer, G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Appl. Catal. 1985, 17, 141–154. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Arzumanov, S.S.; Toktarev, A.V.; Danilova, I.G.; Prosvirin, I.P.; Kriventsov, V.V.; Zaikovskii, V.I.; Freude, D.; Stepanov, A.G. Different Efficiency of Zn2+ and ZnO Species for Methane Activation on Zn-Modified Zeolite. ACS Catal. 2017, 7, 1818–1830. [Google Scholar] [CrossRef]
- Mehdad, A.; Lobo, R.F. Ethane and ethylene aromatization on zinc-containing zeolites. Catal. Sci. Technol. 2017, 7, 3562–3572. [Google Scholar] [CrossRef]
- Chen, X.; Dong, M.; Niu, X.; Wang, K.; Chen, G.; Fan, W.; Wang, J.; Qin, Z. Influence of Zn species in HZSM-5 on ethylene aromatization. Chin. J. Catal. 2015, 36, 880–888. [Google Scholar] [CrossRef]
- Saito, H.; Inagaki, S.; Kojima, K.; Han, Q.; Yabe, T.; Ogo, S.; Kubota, Y.; Sekine, Y. Preferential dealumination of Zn/H-ZSM-5 and its high and stable activity for ethane dehydroaromatization. Appl. Catal. A Gen. 2018, 549, 76–81. [Google Scholar] [CrossRef]
- Tamiyakul, S.; Sooknoi, T.; Lobban, L.L.; Jongpatiwut, S. Generation of reductive Zn species over Zn/HZSM–5 catalysts for n–pentane aromatization. Appl. Catal. A Gen. 2016, 525, 190–196. [Google Scholar] [CrossRef]
- Gong, T.; Qin, L.; Lu, J.; Feng, H. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion. Phys. Chem. Chem. Phys. 2016, 18, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; He, N.; Zhao, Y.; Lin, L.; Zhou, W.; Xiong, G.; Xie, H.B.; Guo, H.C. The Crucial Role of Skeleton Structure and Carbon Number on Short-Chain Alkane Activation over Zn/HZSM-5 Catalyst: An Experimental and Computational Study. Catal. Lett. 2018, 148, 2069–2081. [Google Scholar] [CrossRef]
- Liu, J.X.; He, N.; Zhou, W.; Lin, L.; Liu, G.D.; Liu, C.Y.; Wang, J.L.; Xin, Q.; Xiong, G.; Guo, H.C. Isobutane aromatization over a complete Lewis acid Zn/HZSM-5 zeolite catalyst: Performance and mechanism. Catal. Sci. Technol. 2018, 8, 4018–4029. [Google Scholar] [CrossRef]
- Liu, G.D.; Liu, J.X.; He, N.; Miao, C.L.; Wang, J.L.; Xin, Q.; Guo, H.C. Silicalite-1 zeolite acidification by zinc modification and its catalytic properties for isobutane conversion. RSC Adv. 2018, 8, 18663–18671. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, S.M.T.; Mezari, B.; Magusin, P.C.M.M.; Pidko, E.A.; Hensen, E.J.M. Structure and Reactivity of Zn-Modified ZSM-5 Zeolites: The Importance of Clustered Cationic Zn Complexes. ACS Catal. 2011, 2, 71–83. [Google Scholar] [CrossRef]
- Wu, J.F.; Wang, W.D.; Xu, J.; Deng, F.; Wang, W. Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Chemistry 2010, 16, 14016–14025. [Google Scholar] [CrossRef] [PubMed]
- Pidko, E.A.; van Santen, R.A. Activation of Light Alkanes over Zinc Species Stabilized in ZSM-5 Zeolite: A Comprehensive DFT Study. J. Phys. Chem. C 2007, 111, 2643–2655. [Google Scholar] [CrossRef]
- Barbosa, L.A.M.; Zhidomirov, G.M.; van Santen, R.A. Theoretical Study of the Molecular Hydrogen Adsorption and Dissociation on Different Zn(II) Active Sites of Zeolites. Catal. Lett. 2001, 77, 55–62. [Google Scholar] [CrossRef]
- Kolyagin, Y.; Ordomsky, V.; Khimyak, Y.; Rebrov, A.; Fajula, F.; Ivanova, I. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. J. Catal. 2006, 238, 122–133. [Google Scholar] [CrossRef]
- Barbosa, L.A.M.M.; van Santen, R.A. Study of the Activation of C-H and H-H Chemical Bonds by the [ZnOZn]2+ Oxycation:Influence of the Zeolite Framework Geometry. J. Phys. Chem. B 2003, 107, 14342–14349. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.; Wang, J.; Lin, L.; Zhang, X.; He, N.; Liu, C.; Guo, H. Enhancing Propane Aromatization Performance of Zn/H-ZSM-5 Zeolite Catalyst with Pt Promotion: Effect of the Third Metal Additive-Sn. Catal. Lett. 2019, 149, 2064–2077. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, X.; He, N.; Liu, J.; Xin, Q.; Guo, H. Operando Dual Beam FTIR Study of Hydroxyl Groups and Zn Species over Defective HZSM-5 Zeolite Supported Zinc Catalysts. Catalysts 2019, 9, 100. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.X.; Lin, L.; Zhang, X.T.; He, N.; Liu, C.Y.; Guo, H.C. Enhanced dehydrogenative aromatization of propane by incorporating Fe and Pt into Zn/HZSM-5 catalyst. Ind. Eng. Chem. Res. 2018, 57, 16246–16256. [Google Scholar] [CrossRef]
- Bordiga, S.; Roggero, I.; Ugliengo, P.; Zecchina, A.; Bolis, V.; Artioli, G.; Buzzoni, R.; Marra, G.; Rivetti, F.; Spanò, G.; et al. Characterization of defective silicalites. J. Chem. Soc. Dalton Trans. 2000, 21, 3921–3929. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Xie, S.; Xu, L. Promoted metal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization. Appl. Catal. A Gen. 2009, 360, 8–16. [Google Scholar] [CrossRef]
- Bolis, V.; Busco, C.; Bordiga, S.; Ugliengo, P.; Lamberti, C.; Zecchina, A. Calorimetric and IR spectroscopic study of the interaction of NH3 with variously prepared defective silicalites: Comparison with ab initio computational data. Appl. Surf. Sci. 2002, 196, 56–70. [Google Scholar] [CrossRef]
- Ono, Y.; Kanae, K. Transformation of butanes over ZSM-5 zeolites. Part 1.—Mechanism of cracking of butanes over H-ZSM-5. J. Chem. Soc. Faraday Trans. 1991, 87, 663–667. [Google Scholar] [CrossRef]
- Kolyagin, Y.G.; Ivanova, I.I.; Pirogov, Y.A. (1)H and (13)C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nucl. Magn. Reson. 2009, 35, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, I.I.; Kolyagin, Y.G.; Ordomsky, V.V.; Asachenko, E.V.; Pasynkova, E.M.; Pirogov, Y.A. Surface species formed during propane aromatization over Zn/MFI catalyst as determined by in situ spectroscopic techniques. J. Mol. Catal. A Chem. 2009, 305, 47–53. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, J.L.; Zhou, W.; Miao, C.L.; Xiong, G.; Xin, Q.; Guo, H.C. Construction of an operando dual-beam fourier transform infrared spectrometer and its application in the observation of isobutene reactions over nano-sized HZSM-5 zeolite. Chin. J. Catal. 2017, 38, 13–19. [Google Scholar] [CrossRef]
Sample | HZSM-5 | ZnSnPt/HZSM-5 | ||||||
---|---|---|---|---|---|---|---|---|
SiO2/Al2O3 | 30 | 110 | 700 | ∞ | 30 | 110 | 700 | ∞ |
SBET a | 425 | 342 | 380 | 443 | 364 | 291 | 293 | 354 |
Smicro b | 334 | 232 | 232 | 364 | 310 | 212 | 196 | 324 |
Sextern b | 91 | 110 | 148 | 79 | 54 | 79 | 97 | 30 |
Vpores b | 0.35 | 0.27 | 0.28 | 0.30 | 0.24 | 0.23 | 0.21 | 0.22 |
Vmicro b | 0.23 | 0.14 | 0.14 | 0.16 | 0.18 | 0.13 | 0.13 | 0.12 |
Vmeso c | 0.12 | 0.13 | 0.14 | 0.14 | 0.06 | 0.10 | 0.08 | 0.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Liu, J.; Wang, J.; Lin, L.; He, N.; Zhang, X.; Guo, H. Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration. Catalysts 2019, 9, 571. https://doi.org/10.3390/catal9070571
Zhou W, Liu J, Wang J, Lin L, He N, Zhang X, Guo H. Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration. Catalysts. 2019; 9(7):571. https://doi.org/10.3390/catal9070571
Chicago/Turabian StyleZhou, Wei, Jiaxu Liu, Jilei Wang, Long Lin, Ning He, Xiaotong Zhang, and Hongchen Guo. 2019. "Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration" Catalysts 9, no. 7: 571. https://doi.org/10.3390/catal9070571
APA StyleZhou, W., Liu, J., Wang, J., Lin, L., He, N., Zhang, X., & Guo, H. (2019). Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration. Catalysts, 9(7), 571. https://doi.org/10.3390/catal9070571