Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel
Abstract
:1. Introduction
- (1)
- SR: CnHm + nH2O → (m/2+n)H2 + nCO
- (2)
- POX: CnHm + (n/2)O2 → (m/2)H2 + nCO
- (3)
- ATR: CnHm + (n/2)H2O + (n/4)O2 → (m+n)/2H2 + nCO
- (4)
- WGSR: CO + H2O ↔ H2 + CO2
2. Results and Discussion
2.1. Catalytic Performances in the Absence and Presence of Aromatic Hydrocarbon
2.2. Catalyst Analysis before and after Reaction in the Absence and Presence of Aromatic Hydrocarbon
2.3. Catalytic Performances of Ni-Al-Based Catalysts with Fe and Rh Promoters in the Presence of Aromatic Hydrocarbon
2.4. Analysis of Rh-Ni-Al Catalyst Before and After Reaction in the Presence of Aromatic Hydrocarbon
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalytic Reforming Tests
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Afgan, N.; Veziroglu, A. Sustainable resilience of hydrogen energy system. Int. J. Hydrogen Energy 2012, 37, 5461–5467. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Megede, D.Z. Fuel processors for fuel cell vehicles. J. Power Sources 2002, 106, 35–41. [Google Scholar] [CrossRef]
- Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L. Fuel processors for fuel cell APU applications. J. Power Sources 2006, 154, 503–508. [Google Scholar] [CrossRef]
- Lindström, B.; Karlsson, J.A.J.; Ekdunge, P.; De Verdier, L.; Häggendal, B.; Dawody, J.; Nilsson, M.; Pettersson, L.J. Diesel fuel reformer for automotive fuel cell applications. Int. J. Hydrogen Energy 2009, 34, 3367–3381. [Google Scholar] [CrossRef]
- Yoon, S.H.; Bae, J.M.; Lee, S.H.; Pham, T.V.; Katikaneni, S.P. A diesel fuel processor for stable operation of solid oxide fuel cells system: II. Integrated diesel fuel processor for the operation of solid oxide fuel cells. Int. J. Hydrogen Energy 2012, 37, 9228–9236. [Google Scholar] [CrossRef]
- Yoon, S.H.; Bae, J.M. A diesel fuel processor for stable operation of solid oxide fuel cells system: I. Introduction to post-reforming for the diesel fuel processor. Catal. Today 2010, 156, 49–57. [Google Scholar] [CrossRef]
- Gerardo, V.H.; Johanan, Á.J.; Tobias, M.; Michael, D.; Keno, L.; Stephan, K. Exergy analysis of the diesel pre-reforming SOFC-system with anode off-gas recycling in the SchIBZ project. Part II: System exergetic evaluation. Int. J. Hydrogen Energy 2019, 44, 10916–10924. [Google Scholar]
- Bali, A.; Blanchard, J.; Chamoumi, M.; Abatzoglou, N. Bio-Oil Steam Reforming over a Mining Residue Functionalized with Ni as Catalyst Ni-UGSO. Catalysts 2018, 8, 1. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, J.S.; Lee, Y.J.; Park, N.K.; Kim, Y.C.; Hong, S.I.; Moon, D.J. Steam reforming of n-hexadecane over noble metal-modified Ni-based catalysts. Catal. Today 2008, 136, 228–234. [Google Scholar] [CrossRef]
- Fauteux-Lefebvre, C.; Abatzoglou, N.; Blanchard, J.; Gitzhofer, F. Steam reforming of liquid hydrocarbons over a nickel-alumina spinel catalyst. J. Power Sources 2010, 195, 3275–3283. [Google Scholar] [CrossRef]
- Peymani, M.; Alavi, S.M.; Arandiyan, H.; Rezaei, M. Rational Design of High Surface Area Mesoporous Ni/CeO2 for Partial Oxidation of Propane. Catalysts 2018, 8, 388. [Google Scholar] [CrossRef]
- Navarro, R.M.; Alvarez-Galvan, M.C.; Rosa, F.; Fierro, J.L.G. Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped Al2O3. Appl. Catal. A Gen 2006, 297, 60–72. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, H.; Liu, H.; Zhou, X. Self-sustained electrochemical promotion catalysts for partial oxidation reforming of heavy hydrocarbons. Int. J. Hydrogen Energy 2012, 37, 17928–17935. [Google Scholar] [CrossRef]
- Kang, I.Y.; Bae, J.M. Autothermal reforming study of diesel for fuel cell application. J. Power Sources 2006, 159, 1283–1290. [Google Scholar] [CrossRef]
- Deivanayagam, H.; Ruinan, Y.; Yingcong, Z.; Brian, G.; Sotirios, M.; Robyn, E.S.; Michael, A.L.; Marco, J.C.; Rajinder, G.; Andrew, D.; et al. Catalytic partial oxidation reformation of diesel, gasoline, and natural gas for use in low temperature combustion engines. Fuel 2019, 246, 295–307. [Google Scholar]
- Savvas, L.D.; Nikolaos, D.C.; Kyriakos, N.P.; Maria, A.G. Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. Energies 2019, 12, 809. [Google Scholar]
- Parmar, R.D.; Kundu, A.; Karan, K. Thermodynamic analysis of diesel reforming process: Mapping of carbon formation boundary and representative independent reactions. J. Power Sources 2009, 194, 1007–1020. [Google Scholar] [CrossRef]
- Mueller, C.J.; Cannella, W.J.; Bays, J.T.; Bruno, T.J.; DeFabio, K.; Dettman, H.D.; Gieleciak, R.M.; Huber, M.L.; Kweon, C.B.; McConnell, S.S.; et al. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties. Energy Fuels 2016, 30, 1445–1461. [Google Scholar]
- Gonzalez, A.V.; Pettersson, L.J. Full-scale autothermal reforming for transport applications: The effect of diesel fuel quality. Catal. Today 2013, 210, 9–25. [Google Scholar] [CrossRef]
- Huseyin, A. Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane. Int. J. Hydrogen Energy 2018, 43, 6561–6574. [Google Scholar]
- Dori, Y.K.; Kristian, S.; Yiying, J.; Wakshum, M.T.; Zhixin, Y. Biogas dry reforming for syngas production on La promoted hydrotalcite-derived Ni catalysts. Int. J. Hydrogen Energy 2018, 43, 19438–19450. [Google Scholar]
- Norazimah, H.; Sumaiya, Z.A.; Osarieme, U.O.; Yun, H.T.; Mohammad, T.A. Hydrogen production from glycerol dry reforming over Ag-promoted Ni/Al2O3. Int. J. Hydrogen Energy 2019, 44, 213–225. [Google Scholar]
- Zhanfeng, H.; Yi, J.; Jianli, W.; Yaoqiang, C. Bi-functional composite oxides M(Na, K)-Ni/La-Al2O3 catalysts for steam reforming of n-decane. Fuel 2018, 212, 193–201. [Google Scholar]
- Ferrandon, M.; Krause, T. Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen. Appl. Catal. A Gen 2006, 311, 135–145. [Google Scholar] [CrossRef]
- Tribalis, A.; Panagiotou, G.D.; Bourikas, K.; Sygellou, L.; Kennou, S.; Ladas, S.; Lycourghiotis, A.; Kordulis, C. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming. Catalysts 2016, 6, 11. [Google Scholar] [CrossRef]
- Hanyu, C.; Xi, W.; Zhixiang, P.; Hongming, X. Numerical Simulation and Experimental Investigation of Diesel Fuel Reforming over a Pt/CeO2-Al2O3 Catalyst. Energies 2019, 12, 1056. [Google Scholar]
- Cai, W.J.; Qian, L.P.; Yue, B.; He, H.Y. Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane. Chin. Chem. Lett. 2014, 25, 1411–1415. [Google Scholar] [CrossRef]
- Hou, Z.; Yashima, T. Small amounts of Rh-promoted Ni catalysts for methane reforming with CO2. Chin. Chem. Lett. 2003, 89, 3–4. [Google Scholar]
- Strohm, J.J.; Zheng, J.; Song, C. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh-Ni catalysts for fuel cells. J. Catal. 2006, 238, 309–320. [Google Scholar] [CrossRef]
- Kaila, R.K.; Gutierrez, A.; Krause, A.O.I. Autothermal reforming of simulated and commercial diesel: The performance of zirconia-supported RhPt catalyst in the presence of sulfur. Appl. Catal. B Environ. 2008, 84, 324–331. [Google Scholar] [CrossRef]
- Lakhapatri, S.L.; Abraham, M.A. Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Appl. Catal. A Gen. 2009, 364, 113–121. [Google Scholar] [CrossRef]
- Karatzas, X.; Jansson, K.; Gonzalez, A.; Dawody, J.; Pettersson, L.J. Autothermal reforming of low-sulfur diesel over bimetallic RhPt supported on Al2O3, CeO2-ZrO2, SiO2 and TiO2. Appl. Catal. B Environ. 2011, 106, 476–487. [Google Scholar] [CrossRef]
- Zheng, Q.; Janke, C.; Farrauto, R. Steam reforming of sulfur-containing dodecane on a Rh-Pt catalyst: Influence of process parameters on catalyst stability and coke structure. Appl. Catal. B Environ. 2014, 160–161, 525–533. [Google Scholar] [CrossRef]
- Vita, A.; Italiano, C.; Pino, L.; Lagana, M.; Recupero, V. Hydrogen-rich gas production by steam reforming of n-dodecane. Part II: Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst. Appl. Catal. B Environ. 2017, 218, 317–326. [Google Scholar] [CrossRef]
- Karatzas, X.; Dawody, J.; Grant, A.; Svensson, E.E.; Pettersson, L.J. Zone-coated Rh-based monolithic catalyst for autothermal reforming of diesel. Appl. Catal. B Environ. 2011, 101, 226–238. [Google Scholar] [CrossRef]
- Karatzas, X.; Jansson, K.; Dawody, J.; Lanza, R.; Pettersson, L.J. Microemulsion and incipient wetness prepared Rh-based catalyst for diesel reforming. Catal. Today 2011, 175, 515–523. [Google Scholar] [CrossRef]
- Shoynkhorova, T.B.; Simonov, P.A.; Potemkin, D.I.; Snytnikov, P.V.; Belyaev, V.D.; Ishchenko, A.V.; Svintsitskiy, D.A.; Sobyanin, V.A. Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2–δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas. Fuel 2018, 237, 237–244. [Google Scholar]
- Rogozhnikov, V.N.; Kuzin, N.A.; Snytnikov, P.V.; Potemkin, D.I.; Shoynkhorova, T.B.; Simonov, P.A.; Shilov, V.A.; Ruban, N.V.; Kulikov, A.V.; Sobyanin, V.A. Design, scale-up, and operation of a Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl alloy wire mesh honeycomb catalytic module in diesel autothermal reforming. Chem. Eng. J. 2019, 374, 511–519. [Google Scholar] [CrossRef]
- Lee, W.S.; Ju, D.G.; Jung, S.Y.; Lee, S.C.; Ha, D.S.; Hwang, B.W.; Kim, J.C. N-Dodecane Autothermal Reforming Properties of Ni-Al Based Catalysts Prepared by Various Methods. Top. Catal 2017, 60, 727–734. [Google Scholar] [CrossRef]
- Jung, S.Y.; Ju, D.G.; Lim, E.J.; Lee, S.C.; Hwang, B.W.; Kim, J.C. Study of sulfur-resistant Ni–Al-based catalysts for autothermal reforming of dodecane. Int. J. Hydrogen Energy 2015, 40, 13412–13422. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kang, I.Y.; Bae, J.M. Effects of ethylene on carbon formation in diesel autothermal reforming. Int. J. Hydrogen Energy 2008, 33, 4780–4788. [Google Scholar] [CrossRef]
- Trabold, T.A.; Lylak, J.S.; Walluk, M.R.; Lin, J.F.; Troiani, D.R. Measurement and analysis of carbon formation during diesel reforming for solid oxide fuel cells. Int. J. Hydrogen Energy 2012, 37, 5190–5201. [Google Scholar] [CrossRef]
- Jo, S.B.; Ju, D.G.; Jung, S.Y.; Ha, D.S.; Chae, H.J.; Lee, S.C.; Kim, J.C. Performance of an Auto-Reduced Nickel Catalyst for Auto-Thermal Reforming of Dodecane. Catalysts 2018, 8, 371. [Google Scholar] [CrossRef]
- Bang, Y.; Han, S.J.; Seo, J.G.; Youn, M.H.; Song, J.H.; Song, I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst. Int. J. Hydrogen Energy 2012, 37, 17967–17977. [Google Scholar] [CrossRef]
- Seo, J.G.; Youn, M.H.; Bang, Y.J.; Song, I.K. Effect of NiAl atomic ratio of mesoporous Ni-Al2O3 aerogel catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). Int. J. Hydrogen Energy 2010, 35, 12174–12181. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Z.; Ma, D.; Luo, H.; Liang, D.; Bao, X. Characterization of Rh-based catalysts with EPR, TPR, IR and XPS. J. Mol. Catal. A: Chem 1999, 149, 51–61. [Google Scholar] [CrossRef]
- Osaki, T.; Mori, T. Characterization of nickel-alumina aerogels with high thermal stability. J. Non-Cryst. Solids 2009, 355, 1590–1596. [Google Scholar] [CrossRef]
- Obu-Cann, K.; Tokutaka, H.; Fujimura, K.; Yoshihara, K.; Metal Materials Group of SASJ. Chemical Analysis of XPS (X-ray Photoelectron Spectroscopy) Data using Self-Organising Maps. J. Surf. Anal. 1999, 6, 85–86. [Google Scholar]
Blank Test | R5A-I | N10A | F10N10A | |||||
---|---|---|---|---|---|---|---|---|
Reaction Time (min) | 30 | 60 | 30 | 60 | 30 | 60 | 30 | 60 |
Carbon dioxide (CO2) | 8.2 | 8.2 | 98.3 | 98.2 | 39.5 | 21.2 | 55.7 | 25.8 |
Ethane (C2H6) | 2.3 | 2.3 | - | - | 3.2 | 2.8 | 2.9 | 2.7 |
Ethylene (C2H4) | 32.2 | 32.2 | - | - | 28.6 | 30.9 | 20.7 | 29.9 |
Propylene (C3H6) | 16.4 | 16.4 | - | - | 13.1 | 15.9 | 7.8 | 14.7 |
1,3-Butadiene (C4H6) | 9.4 | 9.4 | - | - | 4.9 | 8.1 | 3.0 | 7.7 |
1,3-Cyclopentadiene (C5H6) | 4.5 | 4.5 | - | - | 0.9 | 2.9 | 0.4 | 2.6 |
Benzene (C6H6) | 16.2 | 16.2 | 0.2 | 0.3 | 9.7 | 11.1 | 7.9 | 11.7 |
Toluene (C7H8) | 4.2 | 4.2 | - | - | - | 2.4 | 1.1 | 2.1 |
R5A-I | N10A | F10N10A | ||||
---|---|---|---|---|---|---|
Fuel | DH | DHM | DH | DHM | DH | DHM |
Carbon (wt.%) | 21.59 | 20.89 | 19.96 | 47.21 | 20.78 | 45.08 |
R5A-I | N50A | R1N50A | R2N50A | |||||
---|---|---|---|---|---|---|---|---|
Reaction Time (min) | 30 | 300 | 30 | 300 | 30 | 300 | 30 | 300 |
Carbon dioxide (CO2) | 98.3 | 75.5 | 94.1 | 23.8 | 98.7 | 38.7 | 98.7 | 45.6 |
Ethane (C2H6) | - | 0.5 | - | 2.8 | - | 2.7 | - | 2.4 |
Ethylene (C2H4) | - | 0.3 | - | 23.8 | - | 18.2 | - | 16.5 |
Propylene (C3H6) | - | - | - | 12.2 | - | 8.8 | - | 7.9 |
1,3-Butadiene (C4H6) | - | - | - | 5.9 | - | 4.3 | - | 4.1 |
1,3-Cyclopentadiene (C5H6) | - | - | - | 3.5 | - | 2.7 | - | 2.7 |
Benzene (C6H6) | 0.2 | 23.7 | - | 17.9 | - | 16.6 | - | 14.1 |
Toluene (C7H8) | - | - | - | 4.8 | - | 4.1 | - | 3.2 |
R5A-I | N50A | R1N50A | R2N50A | |
---|---|---|---|---|
Carbon (wt.%) | 20.89 | 40.59 | 22.05 | 21.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.G.; Jo, S.B.; Ha, D.S.; Kim, T.Y.; Jung, S.Y.; Chae, H.J.; Lee, S.C.; Kim, J.C. Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel. Catalysts 2019, 9, 573. https://doi.org/10.3390/catal9070573
Ju DG, Jo SB, Ha DS, Kim TY, Jung SY, Chae HJ, Lee SC, Kim JC. Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel. Catalysts. 2019; 9(7):573. https://doi.org/10.3390/catal9070573
Chicago/Turabian StyleJu, Dong Geon, Seong Bin Jo, Dong Su Ha, Tae Young Kim, Suk Yong Jung, Ho Jin Chae, Soo Chool Lee, and Jae Chang Kim. 2019. "Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel" Catalysts 9, no. 7: 573. https://doi.org/10.3390/catal9070573
APA StyleJu, D. G., Jo, S. B., Ha, D. S., Kim, T. Y., Jung, S. Y., Chae, H. J., Lee, S. C., & Kim, J. C. (2019). Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel. Catalysts, 9(7), 573. https://doi.org/10.3390/catal9070573