Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets
Abstract
:1. Introduction
2. Results and Discussions
2.1. Supporting Tungsten Oxide Nanoparticle on MFI Zeolite Nanosheets
2.2. Ethanol Conversion Studies
2.3. Operational Stability Testing
3. Materials and Methods
3.1. Materials
3.2. Preparation of Tungsten Oxide Impregnated MFI Zeolite Nanosheets
3.3. Characterization
3.4. Catalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amghizar, I.; Vandewalle, L.A.; van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y. Dehydration of Ethanol to Ethylene. Ind. Eng. Chem. Res. 2013, 52, 9505–9514. [Google Scholar] [CrossRef]
- Zacharopoulou, V.; Lemonidou, A. Olefins from Biomass Intermediates: A Review. Catalysts 2018, 8, 2. [Google Scholar] [CrossRef]
- Liu, Y. Catalytic Ethylene Oligomerization over Ni/Al-HMS: A Key Step in Conversion of Bio-Ethanol to Higher Olefins. Catalysts 2018, 8, 537. [Google Scholar] [CrossRef]
- Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef] [Green Version]
- Benchaita, T. Greenhouse Gas Emissions from New Petrochemical Plants; Inter-American Development Bank: Washington, DC, USA, 2013. [Google Scholar]
- Moon, S.; Chae, H.-J.; Park, M.B. Dehydration of Bioethanol to Ethylene over H-ZSM-5 Catalysts: A Scale-Up Study. Catalysts 2019, 9, 186. [Google Scholar] [CrossRef]
- Fan, D.; Dai, D.-J.; Wu, H.-S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials (Basel) 2012, 6, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Arenamnart, S.; Trakarnpruk, W. Ethanol Conversion to Ethylene Using Metal-Mordenite Catalysts. Int. J. App. Sci. Eng. 2006, 4, 21–32. [Google Scholar]
- Wu, C.-Y.; Wu, H.-S. Ethylene Formation from Ethanol Dehydration Using ZSM-5 Catalyst. ACS Omega 2017, 2, 4287–4296. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.F.; Gnep, N.S.; Magnoux, P.; Maury, S.; Cadran, N. Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. Appl. Catal. A: Gen. 2009, 367, 39–46. [Google Scholar] [CrossRef]
- Xin, H.; Li, X.; Fang, Y.; Yi, X.; Hu, W.; Chu, Y.; Zhang, F.; Zheng, A.; Zhang, H.; Li, X. Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J. Catal. 2014, 312, 204–215. [Google Scholar] [CrossRef]
- Arai, H.; Take, J.-I.; Saito, Y.; Yoneda, Y. Ethanol dehydration on alumina catalysts: I. The thermal desorption of surface compounds. J. Catal. 1967, 9, 146–153. [Google Scholar] [CrossRef]
- Pan, Q.; Ramanathan, A.; Snavely, W.K.; Chaudhari, R.V.; Subramaniam, B. Synthesis and Dehydration Activity of Novel Lewis Acidic Ordered Mesoporous Silicate: Zr-KIT-6. Ind. Eng. Chem. Res. 2013, 52, 15481–15487. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Yang, X.; Zhang, F. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater. 2008, 116, 210–215. [Google Scholar] [CrossRef]
- Phung, T.K.; Proietti Hernández, L.P.; Lagazzo, A.; Busca, G. Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl. Catal. A: Gen. 2015, 493, 77–89. [Google Scholar] [CrossRef]
- Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal. Lett. 2005, 105, 249–252. [Google Scholar] [CrossRef]
- Zhu, H.; Ramanathan, A.; Wu, J.-F.; Subramaniam, B. Genesis of Strong Brønsted Acid Sites in WZr-KIT-6 Catalysts and Enhancement of Ethanol Dehydration Activity. ACS Catal. 2018, 8, 4848–4859. [Google Scholar] [CrossRef]
- Autthanit, C.; Jongsomjit, B. Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods. J. Oleo Sci. 2018, 67, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Nandiwale, K.Y.; Danby, A.M.; Ramanathan, A.; Chaudhari, R.V.; Subramaniam, B. Zirconium-Incorporated Mesoporous Silicates Show Remarkable Lignin Depolymerization Activity. ACS Sustainable Chem. Eng. 2017, 5, 7155–7164. [Google Scholar] [CrossRef]
- Haishi, T.; Kasai, K.; Iwamoto, M. Fast and Quantitative Dehydration of Lower Alcohols to Corresponding Olefins on Mesoporous Silica Catalyst. Chem. Lett. 2011, 40, 614–616. [Google Scholar] [CrossRef]
- Ramanathan, A.; Maheswari, R.; Barich, D.H.; Subramaniam, B. Niobium incorporated mesoporous silicate, Nb-KIT-6: Synthesis and characterization. Microporous Mesoporous Mater. 2014, 190, 240–247. [Google Scholar] [CrossRef]
- Ramanathan, A.; Subramaniam, B.; Badloe, D.; Hanefeld, U.; Maheswari, R. Direct incorporation of tungsten into ultra-large-pore three-dimensional mesoporous silicate framework: W-KIT-6. J Porous Mater. 2012, 19, 961–968. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; Rooney, D.W.; Thompson, J.; Halawy, S.A.; Mohamed, M.A. Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction. J. Chem. Technol. Biotechnol. 2017, 92, 2952–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R.J.; Chmelka, B.F.; Ryoo, R. Directing zeolite structures into hierarchically nanoporous architectures. Science 2011, 333, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Cho, K.; Kim, J.; Ryoo, R. MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chem. Commun. 2014, 50, 4175–4177. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, K.; Ryoo, R. Cooperative Structure Direction of Diammonium Surfactants and Sodium Ions to Generate MFI Zeolite Nanocrystals of Controlled Thickness. Chem. Mater. 2017, 29, 1752–1757. [Google Scholar] [CrossRef]
- Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J. Am. Chem. Soc. 2010, 132, 4169–4177. [Google Scholar] [CrossRef]
- Park, W.; Yu, D.; Na, K.; Jelfs, K.E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chem. Mater. 2011, 23, 5131–5137. [Google Scholar] [CrossRef]
- Cho, J.; Xu, L.; Jo, C.; Ryoo, R. Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chem. Commun. 2017, 53, 3810–3813. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.Y.; Bui, L.; Gunther, W.R.; Min, E.; Román-Leshkov, Y. Synthesis and Catalytic Activity of Sn-MFI Nanosheets for the Baeyer–Villiger Oxidation of Cyclic Ketones. ACS Catal. 2012, 2, 2695–2699. [Google Scholar] [CrossRef]
- Wu, Y.; Emdadi, L.; Oh, S.C.; Sakbodin, M.; Liu, D. Spatial distribution and catalytic performance of metal–acid sites in Mo/MFI catalysts with tunable meso-/microporous lamellar zeolite structures. J. Catal. 2015, 323, 100–111. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Seo, Y.; Kim, J.-C.; Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. J. Catal. 2013, 301, 187–197. [Google Scholar] [CrossRef]
- Gong, P.; Li, B.; Kong, X.; Liu, J.; Zuo, S. Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin. Appl. Sur. Sci. 2017, 423, 433–442. [Google Scholar] [CrossRef]
- Ponnusamy, R.; Gangan, A.; Chakraborty, B.; Sekhar Rout, C. Tuning the pure monoclinic phase of WO3 and WO3-Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations. J. Appl. Phys. 2018, 123, 24701. [Google Scholar] [CrossRef]
- Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T.-C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T. XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3. J. Phys. Chem. C 2008, 112, 6869–6879. [Google Scholar] [CrossRef]
- Chladek, P.; Coleman, L.J.I.; Croiset, E.; Hudgins, R.R. Gas chromatography method for the characterization of ethanol steam reforming products. J. Chromatogr. Sci. 2007, 45, 153–157. [Google Scholar] [CrossRef]
- DeWilde, J.F.; Czopinski, C.J.; Bhan, A. Ethanol Dehydration and Dehydrogenation on γ-Al2O3: Mechanism of Acetaldehyde Formation. ACS Catal. 2014, 4, 4425–4433. [Google Scholar] [CrossRef]
- Kang, M.; Bhan, A. Kinetics and mechanisms of alcohol dehydration pathways on alumina materials. Catal. Sci. Technol. 2016, 6, 6667–6678. [Google Scholar] [CrossRef]
- DeWilde, J.F.; Chiang, H.; Hickman, D.A.; Ho, C.R.; Bhan, A. Kinetics and Mechanism of Ethanol Dehydration on γ-Al2O3: The Critical Role of Dimer Inhibition. ACS Catal. 2013, 3, 798–807. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Mohamed, M.M.; Zidan, F.I.; Thabet, M.S. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique. J. Hazard. Mater. 2008, 153, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Jiang, S.; Zhang, H. Catalytic wet oxidation of phenol with Fe–ZSM-5 catalysts. RSC Adv. 2016, 6, 3850–3859. [Google Scholar] [CrossRef]
Catalyst | SBET a (m2 g−1) | Smicro b (m2 g−1) | Sext c (m2 g−1) | Vtotal d |
---|---|---|---|---|
MFI | 642 | 152 | 489 | 0.71 |
1-WOx-MFI | 529 | 152 | 377 | 0.57 |
2-WOx-MFI | 470 | 153 | 317 | 0.577 |
4-WOx-MFI | 387 | 149 | 239 | 0.51 |
6-WOx-MFI | 396 | 128 | 267 | 0.49 |
Sample | Shell | N b | R c | σ2 d × 10−3 Å2 | ΔE0(eV) e | r-factor |
---|---|---|---|---|---|---|
1-WOx-ZN | W-O | 3.6 ± 1.9 | 1.80 ± 0.05 | 17.5 ± 7.7 | 7.8 ± 7.0 | 0.019 |
2-WOx-ZN | W-O | 4.1 ± 1.5 | 1.80 ± 0.1 | 16.5 ± 16.5 | 8.8 ± 5.0 | 0.022 |
4-WOx-ZN | W-O | 4.8 ± 1.2 | 1.78 ± 0.02 | 10.5 ± 3.0 | 3.2 ± 3.2 | 0.011 |
6-WOx-ZN | W-O | 5.1 ± 1.2 | 1.77 ± 0.02 | 6.2 ± 3.6 | 3.0 ± 4.6 | 0.026 |
Sample | Temperature of Desorption (°C) | Acid Amount (mmol g−1) | II/(I+II) | TOTAL | ||
---|---|---|---|---|---|---|
I | II | I | II | |||
1-WOx-ZN | 84.5 | 142 | 0.10 | 0.09 | 0.47 | 0.19 |
2-WOx-ZN | 99 | 160 | 0.13 | 0.12 | 0.48 | 0.25 |
4-WOx-ZN | 95 | 156 | 0.12 | 0.2 | 0.625 | 0.319 |
6-WOx-ZN | 94.2 | 157 | 0.16 | 0.23 | 0.589 | 0.39 |
Sample | Ethylene Selectivity | Ethane Selectivity | Acetaldehyde Selectivity | Diethyl Ether Selectivity | Etc Selectivity |
---|---|---|---|---|---|
1-WOx-ZN | 92.86% (0.041 b) | 2.43% (0.002 b) | 2.37% (0.006 b) | 0.36% (0.001 b) | 1.97% (0.033 b) |
2-WOx-ZN | 92.54% (0.535 b) | 2.34% (0.082 b) | 2.95% (0.456 b) | 0.29% (0.033 b) | 1.90% (0.134 b) |
4-WOx-ZN | 91.07% (0.591 b) | 2.59% (0.143 b) | 4.38% (0.297 b) | 0.29% (0.043 b) | 1.69% (0.736 b) |
6-WOx-ZN | 92.44% (0.083 b) | 1.23% (0.837 b) | 4.51% (0.484 b) | 0.27% (0.277 b) | 1.55% (0.712 b) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Numan, M.; Jo, C. Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets. Catalysts 2019, 9, 670. https://doi.org/10.3390/catal9080670
Kim H, Numan M, Jo C. Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets. Catalysts. 2019; 9(8):670. https://doi.org/10.3390/catal9080670
Chicago/Turabian StyleKim, Haneul, Muhammad Numan, and Changbum Jo. 2019. "Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets" Catalysts 9, no. 8: 670. https://doi.org/10.3390/catal9080670
APA StyleKim, H., Numan, M., & Jo, C. (2019). Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets. Catalysts, 9(8), 670. https://doi.org/10.3390/catal9080670