Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Ion Irradiation
2.3. Nanoindentation Tests
3. Results
3.1. Microstructure Analysis
3.2. Nanoindentation Hardness
3.3. Nanoindentation Creep
4. Discussion
4.1. Irradiation Hardening
4.2. Indentation Creep Size Effect
4.3. Irradiation Creep
5. Conclusions
- (1)
- Ion irradiation results in the increase of hardness, because irradiation-induced defects impede the glide of dislocations;
- (2)
- The unirradiated CLAM steel shows indentation creep size effect (ICSE) that the indentation creep strain decreases with the applied load, and ICSE is found to be associated with the variations of geometrical necessary dislocations density. However, ion irradiation results in the alleviation of ICSE due to the irradiation hardening;
- (3)
- Ion irradiation results in the acceleration of nanoindentation creep due to the large numbers of irradiation-induced vacancies whose diffusion controls creep deformation. Meanwhile, owing to the annihilation of vacancies, ion irradiation has a significant influence on the primary creep while only negligible influence has been observed for the steady-state creep.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Osetsky, Y.N.; Bacon, D.J.; Serra, A.; Singh, B.N.; Golubov, S.I. One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper. Philos. Mag. 2003, 83, 61–91. [Google Scholar] [CrossRef]
- Samaras, M.; Victoria, M. Modelling in nuclear energy environments. Mater. Today 2008, 11, 54–62. [Google Scholar] [CrossRef]
- Terentyev, D.; Vörtler, K.; Björkas, C.; Nordlund, K.; Malerba, L. Primary radiation damage in bcc Fe and Fe–Cr crystals containing dislocation loops. J. Nucl. Mater. 2011, 417, 1063–1066. [Google Scholar] [CrossRef]
- Kurata, Y.; Itabashi, Y.; Mimura, H.; Kikuchi, T.; Amezawa, H.; Shimakawa, S.; Tsuji, H.; Shindo, M. In-pile and post-irradiation creep of type 304 stainless steel under different neutron spectra. J. Nucl. Mater. 2000, 283–287, 386–390. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: New York, NY, USA, 2007; p. 711. [Google Scholar]
- Jiao, Z.; Was, G.S. The role of irradiated microstructure in the localized deformation of austenitic stainless steels. J. Nucl. Mater. 2010, 407, 34–43. [Google Scholar] [CrossRef]
- Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jenssen, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andresen, P.L. Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 2002, 300, 198–216. [Google Scholar] [CrossRef]
- Was, G.S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A.M.; Maloy, S.A.; Anderoglu, O.; Sencer, B.H.; Hackett, M. Emulation of reactor irradiation damage using ion beams. Scr. Mater. 2014, 88, 33–36. [Google Scholar] [CrossRef]
- Heintze, C.; Bergner, F.; Akhmadaliev, S.; Altstadt, E. Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening. J. Nucl. Mater. 2016, 472, 196–205. [Google Scholar] [CrossRef]
- Hardie, C.D.; Roberts, S.G.; Bushby, A.J. Understanding the effects of ion irradiation using nanoindentation techniques. J. Nucl. Mater. 2015, 462, 391–401. [Google Scholar] [CrossRef]
- Hosemann, P.; Kiener, D.; Wang, Y.; Maloy, S.A. Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 2012, 425, 136–139. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Hosemann, P.; Vieh, C.; Greco, R.R.; Kabra, S.; Valdez, J.A.; Cappiello, M.J.; Maloy, S.A. Nanoindentation on ion irradiated steels. J. Nucl. Mater. 2009, 389, 239–247. [Google Scholar] [CrossRef]
- Yabuuchi, K.; Kuribayashi, Y.; Nogami, S.; Kasada, R.; Hasegawa, A. Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation. J. Nucl. Mater. 2014, 446, 142–147. [Google Scholar] [CrossRef]
- Reichardt, A.; Lupinacci, A.; Frazer, D.; Bailey, N.; Vo, H.; Howard, C.; Jiao, Z.; Minor, A.M.; Chou, P.; Hosemann, P. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS. J. Nucl. Mater. 2017, 486, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Zhang, J.; Li, X.; Guo, Q.; Wan, F.; Long, Y. Microstructure and nanoindentation of the CLAM steel with nanocrystalline grains under Xe irradiation. J. Nucl. Mater. 2014, 455, 624–629. [Google Scholar] [CrossRef]
- Jiang, S.; Peng, L.; Ge, H.; Huang, Q.; Xin, J.; Zhao, Z. He and H irradiation effects on the nanoindentation hardness of CLAM steel. J. Nucl. Mater. 2014, 455, 335–338. [Google Scholar] [CrossRef]
- Wei, Y.P.; Liu, P.P.; Zhu, Y.M.; Wang, Z.Q.; Wan, F.R.; Zhan, Q. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel. J. Alloys Compd. 2016, 676, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Shen, Y.; Huang, X.; Xu, Z.; Zhu, J. Irradiation-induced hardening and softening of CLAM steel under Fe ion irradiation. Met. Mater. Int. 2017, 23, 1106–1111. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Liu, P.P.; Wan, F.R.; Zhan, Q. Helium and hydrogen irradiation induced hardening in CLAM steel. Fusion Eng. Des. 2015, 91, 73–78. [Google Scholar] [CrossRef]
- Kasada, R.; Konishi, S.; Yabuuchi, K.; Nogami, S.; Ando, M.; Hamaguchi, D.; Tanigawa, H. Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation. Fusion Eng. Des. 2014, 89, 1637–1641. [Google Scholar] [CrossRef]
- Mayo, M.J.; Nix, W.D. A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 1988, 36, 2183–2192. [Google Scholar] [CrossRef]
- LaFontaine, W.R.; Yost, B.; Black, R.D.; Li, C.Y. Indentation load relaxation experiments with indentation depth in the submicron range. J. Mater. Res. 1990, 5, 2100–2106. [Google Scholar] [CrossRef]
- Lucas, B.N.; Oliver, W.C. Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 1999, 30, 601–610. [Google Scholar] [CrossRef]
- Mayo, M.J.; Siegel, R.W.; Narayanasamy, A.; Nix, W.D. Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 1990, 5, 1073–1082. [Google Scholar] [CrossRef]
- Alkorta, J.; Martínez-Esnaola, J.M.; Gil Sevillano, J. Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium. Acta Mater. 2008, 56, 884–893. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Song, Y.X.; Ma, Y.; Huang, X.W.; Zhang, T.H. Nanoindentation investigation on the size-dependent creep behavior in a Zr-Cu-Ag-Al bulk metallic glass. Metals 2019, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Jiang, Y.; Sun, G.; Hu, J.; Zhou, T.; Jiang, Z.; Lian, J. Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu. Mater. Sci. Eng. A 2019, 751, 35–41. [Google Scholar] [CrossRef]
- Wang, C.L.; Lai, Y.H.; Huang, J.C.; Nieh, T.G. Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 2010, 62, 175–178. [Google Scholar] [CrossRef]
- Marques, V.M.F.; Wunderle, B.; Johnston, C.; Grant, P.S. Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 2013, 61, 2471–2480. [Google Scholar] [CrossRef]
- Phani, P.S.; Oliver, W.C. A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 2016, 111, 31–38. [Google Scholar] [CrossRef]
- Phani, P.S.; Oliver, W.C.; Pharr, G.M. On the measurement of power law creep parameters from instrumented indentation. JOM 2017, 69, 2229–2236. [Google Scholar] [CrossRef]
- Li, H.; Ngan, A.H.W. Size effects of nanoindentation creep. J. Mater. Res. 2004, 19, 513–522. [Google Scholar] [CrossRef]
- Ma, Z.S.; Long, S.G.; Zhou, Y.C.; Pan, Y. Indentation scale dependence of tip-in creep behavior in Ni thin films. Scr. Mater. 2008, 59, 195–198. [Google Scholar] [CrossRef]
- Cao, Z.; Li, P.; Lu, H.; Huang, Y.; Zhou, Y.; Meng, X. Indentation size effects on the creep behavior of nanocrystalline tetragonal Ta films. Scr. Mater. 2009, 60, 415–418. [Google Scholar] [CrossRef]
- Haghshenas, M.; Wang, Y.; Cheng, Y.T.; Gupta, M. Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium. Mater. Sci. Eng. A 2018, 716, 63–71. [Google Scholar] [CrossRef]
- Huang, Z.; Harris, A.; Maloy, S.A.; Hosemann, P. Nanoindentation creep study on an ion beam irradiated oxide dispersion strengthened alloy. J. Nucl. Mater. 2014, 451, 162–167. [Google Scholar] [CrossRef]
- Huang, Q.; Li, C.; Li, Y.; Chen, M.; Zhang, M.; Peng, L.; Zhu, Z.; Song, Y.; Gao, S. Progress in development of China Low Activation Martensitic steel for fusion application. J. Nucl. Mater. 2007, 367–370, 142–146. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Peng, L.; Li, Y.; Li, C. Microstructure and its influence on mechanical properties of CLAM steel. Fusion Eng. Des. 2012, 87, 1628–1632. [Google Scholar] [CrossRef]
- Wang, W.T.; Guo, X.Z.; Huang, B.; Tao, J.; Li, H.G.; Pei, W.J. The flow behaviors of CLAM steel at high temperature. Mater. Sci. Eng. A 2014, 599, 134–140. [Google Scholar] [CrossRef]
- Zhong, B.; Huang, B.; Li, C.; Liu, S.; Xu, G.; Zhao, Y.; Huang, Q. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K. J. Nucl. Mater. 2014, 455, 640–644. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, X.; Liu, S.; Li, C.; Huang, Q. High cycle fatigue properties of CLAM steel at 723K and 823K. Fusion Eng. Des. 2015, 100, 608–613. [Google Scholar] [CrossRef]
- Peng, L.; Ge, H.; Dai, Y.; Huang, Q.; Ye, M. Microstructure and microhardness of CLAM steel irradiated up to 20.8 dpa in STIP-V. J. Nucl. Mater. 2016, 468, 255–259. [Google Scholar] [CrossRef]
- Luppo, M.I.; Bailat, C.; Schäublin, R.; Victoria, M. Tensile properties and microstructure of 590 MeV proton-irradiated pure Fe and a Fe-Cr alloy. J. Nucl. Mater. 2000, 283–287, 483–487. [Google Scholar] [CrossRef]
- Peng, L.; Huang, Q.; Li, C.; Liu, S. Preliminary analysis of irradiation effects on CLAM after low dose neutron irradiation. J. Nucl. Mater. 2009, 386–388, 312–314. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhao, M.Z.; Zhu, Y.M.; Bai, J.W.; Wan, F.R.; Zhan, Q. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel. J. Alloys Compd. 2013, 579, 599–605. [Google Scholar] [CrossRef]
- Huang, X.; Shen, Y.; Li, Q.; Xu, Z.; Zhu, J. Microstructural evolution of CLAM steel under 3.5 MeV Fe13+ ion irradiation. Fusion Eng. Des. 2016, 109–111, 1058–1066. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, M.; Zhang, Z.; Jiang, M.; Liu, S. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C–550 °C. J. Nucl. Mater. 2018, 501, 200–207. [Google Scholar] [CrossRef]
- Norgett, M.I.; Robinson, M.T.; Torrens, I.M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2008 Program. Available online: http://www.srim.org/ (accessed on 13 June 2019).
- Trivedi, R.; Cech, V. Mechanical properties of plasma polymer film evaluated by conventional and alternative nanoindentation techniques. Surf. Coat. Technol. 2010, 205, S286–S289. [Google Scholar] [CrossRef]
- Allison, P.G.; Weiss, C.A.; Moser, R.D.; Diaz, A.J.; Rivera, O.G.; Holton, S.S. Nanoindentation and SEM/EDX characterization of the geopolymer-to-steel interfacial transition zone for a reactive porcelain enamel coating. Compos. Part B Eng. 2015, 78, 131–137. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.J.; Lee, Y.H.; Jang, J.; Kwon, D. Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. J. Mater. Res. 2006, 21, 2975–2978. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, B.W.; Read, D.T.; Kwon, D. Influence of tip bluntness on the size-dependent nanoindentation hardness. Scr. Mater. 2005, 52, 353–358. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Cheng, Y.; Yu, L.; Yi, X.; Gao, H.; Duan, H. Model of nanoindentation size effect incorporating the role of elastic deformation. J. Mech. Phys. Solids 2019, 126, 245–255. [Google Scholar] [CrossRef]
- Miura, T.; Fujii, K.; Fukuya, K.; Takashima, K. Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels. J. Nucl. Mater. 2011, 417, 984–987. [Google Scholar] [CrossRef]
- Hakamada, M.; Nakamoto, Y.; Matsumoto, H.; Iwasaki, H.; Chen, Y.; Kusuda, H.; Mabuchi, M. Relationship between hardness and grain size in electrodeposited copper films. Mater. Sci. Eng. A 2007, 457, 120–126. [Google Scholar] [CrossRef]
- Hayakawa, M.; Tomatsu, K.; Nakayama, E.; Okamura, K.; Yamamoto, M.; Shizawa, K. Evaluating microscopic hardness in ferritic steel based on crystallographic measurements via electron backscatter diffraction. Mater. Sci. Eng. A 2017, 700, 281–290. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H.J. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Q.; Yang, H.; Duan, H.; Qu, J. A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 2017, 485, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, L.; Qian, W.; Mei, J.; Liu, X. The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation. Nucl. Eng. Technol. 2016, 48, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Kasada, R.; Takayama, Y.; Yabuuchi, K.; Kimura, A. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 2011, 86, 2658–2661. [Google Scholar] [CrossRef] [Green Version]
- International Standard ISO 14577-1. Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters–Part 1: Test Method; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Tabor, D. A simple theory of static and dynamic hardness. Proc. R. Soc. A 1948, 192, 247–274. [Google Scholar]
- Kassner, M.E. Fundamentals of Creep in Metals and Alloys, 3rd ed.; Elservier: Amsterdam, The Netherlands, 2015; pp. 1–288. [Google Scholar]
- Weertman, J. Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 1955, 26, 1213–1217. [Google Scholar] [CrossRef]
- Langdon, T.G. Creep at low stresses: An evaluation of diffusion creep and Harper–Dorn creep as viable creep mechanisms. Metall. Mater. Trans. A 2002, 33, 249–259. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer: New York, NY, USA, 2007; p. 180. [Google Scholar]
- Goodall, R.; Clyne, T.W. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 2006, 54, 5489–5499. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Gao, X.; Cui, M.; Li, B.; Sun, J.; Yao, C.; Wei, K.; Shen, T.; Pang, L.; et al. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 344, 5–10. [Google Scholar] [CrossRef]
Specimens | Ions | Energy (MeV) | Irradiation Temperature (K) | Irradiation Dose 1 (dpa) | Irradiation Time 2 (min) |
---|---|---|---|---|---|
1# | —— | —— | room temperature | unirradiated | 0 |
2# | Si3+ | 6 | 393 ± 15 | 0.2 | 53 |
3# | Si3+ | 6 | 393 ± 15 | 0.4 | 155 |
Specimens | Irradiation Dose (dpa) | H0 (GPa) |
---|---|---|
1# | unirradiated | 3.15 |
2# | 0.2 | 3.59 |
3# | 0.4 | 3.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, W.; Yu, L.; Chen, L.; Sui, H.; Duan, H. Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation. Crystals 2020, 10, 44. https://doi.org/10.3390/cryst10010044
Liu Y, Liu W, Yu L, Chen L, Sui H, Duan H. Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation. Crystals. 2020; 10(1):44. https://doi.org/10.3390/cryst10010044
Chicago/Turabian StyleLiu, Ying, Wenbin Liu, Long Yu, Lirong Chen, Haonan Sui, and Huiling Duan. 2020. "Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation" Crystals 10, no. 1: 44. https://doi.org/10.3390/cryst10010044
APA StyleLiu, Y., Liu, W., Yu, L., Chen, L., Sui, H., & Duan, H. (2020). Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation. Crystals, 10(1), 44. https://doi.org/10.3390/cryst10010044