New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis
2.3.1. Synthesis of 2,2′-{(2-hydroxypropane-1,3-diyl)bis[nitrilomethylidene]}bis(4-bromo-6-methoxyphenol) (H3L1)
2.3.2. Synthesis of 2,2′-{(2-hydroxypropane-1,3-diyl)bis(nitriloeth-1-yl-1-ylidene)}diphenol (H3L2)
2.3.3. Synthesis of [Cu(HL1)]·H2O (1)
2.3.4. Synthesis of [Cu2(L1)(OAc)(MeOH)]·2H2O·MeOH (2)
2.3.5. Synthesis of [Cu4(L2)2(OAc)2]·4MeOH (3)
2.3.6. Synthesis of [Cu4(L2)2(OAc)2]·4H2O·4MeOH (4)
2.4. X-ray Crystal Structure Determination
3. Results
3.1. Fourier Transform Infrared (FTIR) Spectra
3.2. Description of the Molecular Structure
3.3. Thermal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019, 14, 100195. [Google Scholar] [CrossRef] [PubMed]
- Vigato, P.A.; Peruzzo, V.; Tamburini, S. Acyclic and cyclic compartmental ligands: Recent results and perspectives. Co-Ord. Chem. Rev. 2012, 256, 953–1114. [Google Scholar] [CrossRef]
- Bartyzel, A.; Kaczor, A. Synthesis, crystal structure, thermal, spectroscopic and theoretical studies of N3O2-donor Schiff base and its complex with CuII ions. Polyhedron 2018, 139, 271–281. [Google Scholar] [CrossRef]
- Ermiş, E.; Durmuş, K. Novel thiophene-benzothiazole derivative azomethine and amine compounds: Microwave assisted synthesis, spectroscopic characterization, solvent effects on UV-Vis absorption and DFT. J. Mol. Struct. 2020, 1217, 128354. [Google Scholar] [CrossRef]
- Rigamonti, L.; Cinti, A.; Forni, A.; Pasini, A.; Piovesana, O. Copper(II) complexes of tridentate Schiff Bases of 5-substituted salicylaldehydes and diamines—The role of the substituent and the diamine in the formation of mono-, di- and trinuclear species—Crystal structures and magnetic Properties. Eur. J. Inorg. Chem. 2008, 23, 3633–3647. [Google Scholar] [CrossRef]
- Rigamonti, L.; Forni, A.; Pievo, R.; Reedijk, J.; Pasini, A. Copper(II) compounds with NNO tridentate Schiff base ligands: Effect of subtle variations in ligands on complex formation, structures and magnetic properties. Inorg. Chim. Acta 2012, 387, 373–382. [Google Scholar] [CrossRef]
- Hegade, S.; Jadhav, Y.; Chavan, S.; Mulik, G.; Gautam, G. Catalytic assay of Schiff base Co(II), Ni(II), Cu(II) and Zn(II) complexes for N-alkylation of heterocycles with 1,3-dibromopropane. J. Chem. Sci. 2020, 132, 92–98. [Google Scholar] [CrossRef]
- Shukla, N.S.; Gaur, P.; Bagri, S.S.; Mehrotra, R.; Chaurasia, B.; Raidas, M.L. Pd(II) complexes with ONN pincer ligand: Tailored synthesis, characterization, DFT, and catalytic activity toward the Suzuki-Miyaura reaction. J. Mol. Struct. 2021, 1225, 129071. [Google Scholar] [CrossRef]
- Karman, M.; Romanowski, G. Cis-dioxidomolybdenum(VI) complexes with chiral tetradentate Schiff bases: Synthesis, spectroscopic characterization and catalytic activity in sulfoxidation and epoxidation. Inorg. Chim. Acta 2020, 511, 119832. [Google Scholar] [CrossRef]
- Das, B.; Jana, A.; Mahapatra, A.D.; Chattopadhyay, D.; Dhara, A.; Mabhai, S.; Dey, S. Fluorescein derived Schiff base as fluorimetric zinc(II) sensor via ‘turn on’ response and its application in live cell imaging. Spectrochim. Acta A 2019, 212, 222–231. [Google Scholar] [CrossRef]
- Oiye, É.N.; Muzetti Ribeiro, M.F.; Toia Katayama, J.M.; Tadini, M.C.; Balbino, M.A.; Eleotério, I.C.; Magalhães, J.; Castro, A.S.; Mota Silva, R.S.; da Cruz Júnior, J.W.; et al. Electrochemical sensors containing Schiff bases and their transition metal complexes to detect analytes of forensic, pharmaceutical and environmental interest. A Review. Crit. Rev. Anal. Chem. 2019, 49, 488–509. [Google Scholar] [CrossRef] [PubMed]
- Buta, I.; Ardelean, A.; Lönnecke, P.; Novitchi, G.; Hey-Hawkins, E.; Andruh, M.; Costisor, O. Structural and magnetic properties of three one-dimensional nitrato-, azido- and phenoxido-bridged copper(II) coordination polymers. Polyhedron 2020, 190, 114766. [Google Scholar] [CrossRef]
- Rigamonti, L.; Forni, A.; Sironi, M.; Ponti, A.; Ferretti, A.M.; Baschieri, C.; Pasini, A. Experimental and theoretical investigations on magneto-structural correlation in trinuclear copper(II) hydroxido propellers. Polyhedron 2018, 145, 22–34. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Q.; Zhang, H.; Zhang, S. Cobalt cubane clusters based on Schiff base: Synthesis, characterization, magnetic properties and Hirshfeld surface analysis. J. Clust. Sci. 2020, 31, 685–691. [Google Scholar] [CrossRef]
- Gao, X.-S.; Ni, C.-C.; Ren, X.-M. Syntheses, crystal structures, photoluminescent and magnetic properties of complexes of zinc(II) and copper(II) with Schiff-base ligands derived from 2,6-diacetylpyridine. Polyhedron 2017, 138, 225–231. [Google Scholar] [CrossRef]
- Gusev, A.N.; Kiskin, M.A.; Braga, E.V.; Chapran, M.; Wiosna-Salyga, G.; Baryshnikov, G.V.; Minaeva, V.A.; Minaev, B.F.; Ivaniuk, K.; Stakhira, P.; et al. Novel zinc complex with an ethylenediamine Schiff base for high-luminance blue fluorescent OLED applications. J. Phys. Chem. C 2019, 123, 11850–11859. [Google Scholar] [CrossRef]
- Sutradhara, D.; Chowdhury, H.; Banerjee, S.; Sahad, N.M.; Ghosha, B.K. Syntheses, crystal structures and luminescence behaviors of four neutral penta-/hexacoordinate cadmium(II) compounds containing a tridentate Schiff base: Variation in coordination numbers, nuclearities and dimensionalities by changing halides/pseudohalides. Inorg. Chim. Acta 2019, 485, 86–97. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Ou, Y.-J.; Hong, X.-J.; Wei, L.-M.; Wan, L.-T.; Zhou, W.-H.; Zhan, Q.-G.; Cai, Y.-P. Anion-dependent assembly of four sensitized near-infrared luminescent heteronuclear ZnII–YbIII Schiff base complexes from a trinuclear ZnII complex. Inorg. Chem. 2014, 53, 9625–9632. [Google Scholar] [CrossRef]
- Dong, Y.; Fan, R.-Q.; Chen, W.; Zhang, H.-J.; Song, Y.; Du, X.; Wang, P.; Wei, L.-G.; Fan, R. Different conjugated system Zn(II) Schiff base complexes: Supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials. Dalton Trans. 2017, 46, 1266–1276. [Google Scholar] [CrossRef]
- Shiju, C.; Arish, D.; Kumaresan, S. Novel water soluble Schiff base metal complexes: Synthesis, characterization, antimicrobial-, DNA cleavage, and anticancer activity. J. Mol. Struct. 2020, 1221, 128770. [Google Scholar] [CrossRef]
- Sangwan, V.; Singh, D.P. Macrocyclic Schiff base complexes as potent antimicrobial agents: Synthesis, characterization and biological studies. Mater. Sci. Eng. C 2019, 105, 110119. [Google Scholar] [CrossRef]
- Laila, H.; Abdel-Rahman Ahmed, M.; Abu-Dief Emad, F.; Hamdan, S.K. Some new nano-sized Cr(III), Fe(II), Co(II), and Ni(II) complexes incorporating 2-((E)-(pyridine-2-ylimino)methyl)napthalen-1-ol ligand: Structural characterization, electrochemical, antioxidant, antimicrobial, antiviral assessment and DNA interaction. J. Photochem. Photobiol. B Biol. 2016, 160, 18–31. [Google Scholar]
- Laila, H.; Abdel-Rahman Ahmed, M.; Abu-Dief Maram Basha Azza, A.; Abdel-Mawgoud, A.A.H. Three novel Ni(II), VO(II) and Cr(III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity. Appl. Organometal. Chem. 2017, 31, 271–285. [Google Scholar]
- Laila, H.; Abdel-Rahman Mohamed Shaker, S.; Adam Ahmed, M.; Abu-Dief, H.; Moustafa Maram, T.; Basha Ahmed, S.; Ahmed, H.E.-S. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Appl. Organometal. Chem. 2018, 32, 527–535. [Google Scholar]
- Laila, H.; Abdel-Rahman Ahmed, M.; Abu-Dief Mohamed, R.; Shehata Faten, M.; Atlam Azza, A.; Abdel-Mawgoud, H. Some new Ag(I), VO(II) and Pd(II) chelates incorporating tridentate imine ligand: Design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Appl. Organometal. Chem. 2019, 33, 4699–4708. [Google Scholar]
- Ahmed, M.; Abu-Dief Laila, H.; Abdel-Rahman Azza, A.; Abdel-Mawgoud, H. A robust in vitro Anticancer, Antioxidant and Antimicrobial Agents Based on New Metal-Azomethine Chelates Incorporating Ag(I), Pd (II) and VO (II) Cations: Probing the Aspects of DNA Interaction. Appl. Organometal. Chem. 2020, 34, 1–13. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, L.; Xu, Q.T.; Jiang, H.H.; Li, D.; Líu, D.X.; Chen, S.H.; Yang, Z.H. Crystal structure of a mixed ligand trinuclear complex of cadmium(II). J. Coord. Chem. 1998, 46, 97–104. [Google Scholar] [CrossRef]
- Mukherjee, A.; Rudra, I.; Naik, S.G.; Ramasesha, S.; Nethaji, M.; Chakravarty, A.R. Covalent linkage of the type-2 and type-3 structural mimics to model the active site structure of multicopper oxidases: Synthesis and magneto-structural properties of two angular trinuclear copper(II) complexes. Inorg. Chem. 2003, 42, 5660–5668. [Google Scholar] [CrossRef]
- Yang, F.-L.; Shao, F.; Zhu, G.-Z.; Shi, Y.-H.; Gao, F.; Li, X.-L. Structures and magnetostructural correlation analyses for two novel hexanuclear complexes based on a pentadentate Schiff base ligand. Chem. Sel. 2017, 2, 110–117. [Google Scholar] [CrossRef]
- Dolai, M.; Mistri, T.; Panja, A.; Ali, M. Diversity in supramolecular self-assembly through hydrogen-bonding interactions of non-coordinated aliphatic –OH group in a series of heterodinuclear CuIIM (M = NaI, ZnII, HgII, SmIII, BiIII, PbII and CdII). Inorg. Chim. Acta 2013, 399, 95–104. [Google Scholar] [CrossRef]
- Bartyzel, A. Synthesis, thermal behaviour and some properties of CuII complexes with N,O-donor Schiff bases. J. Therm. Anal. Cal. 2018, 131, 1221–1236. [Google Scholar] [CrossRef] [Green Version]
- Agilent Technologies Ltd. CrysAlis PRO; Agilent Technologies Ltd.: Oxfordshire, UK, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Raman, N.; Pothiraj, K.; Baskaran, T. DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 20-methylacetoacetanilide. J. Mol. Struct. 2011, 1000, 135–144. [Google Scholar] [CrossRef]
- Deeloed, W.; Wannapaiboon, S.; Pansiri, P.; Kumpeerakij, P.; Phomphrai, K.; Laobuthee, A.; Hanlumyuang, Y.; Suramitr, S.; Piyanut, P.; Worawat, W. Crystal structure and Hirshfeld surface snalysis of bis(triethanolamine)nickel(II) dinitrate complex and a revelation of its characteristics via spectroscopic, electrochemical and DFT studies towards a promising precursor for metal oxides synthesis. Crystals 2020, 10, 474. [Google Scholar] [CrossRef]
- Ignatyev, I.; Kondratenko, Y.; Fundamensky, V.; Kochina, T. Synthesis and characterization of cobalt(II) complexes with triethanolamine and succinate and/or nitrate anions. Transit. Met. Chem. 2017, 43, 127–136. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef]
- Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 2015, 90, 47–57. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, N.T.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Mukherjee, A.; Saha, M.K.; Rudra, I.; Ramasesha, S.; Nethaji, M.; Chakravarty, A.R. Synthesis, crystal structure and magnetic properties of quasi-linear tetranuclear copper(II) Schiff base complexes formed by covalent linkage of asymmetrically dibridged dicopper(II) units. Inorg. Chim. Acta 2004, 357, 1077–1082. [Google Scholar] [CrossRef]
- Thermo Scientific. Nicolet TGA Vapor Phase, FTIR Spectra Library by Software OMNIC; Thermo Scientific: Waltham, MA, USA, 2007. [Google Scholar]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
CCDC | 2039095 | 2039094 | 2039096 | 2039097 |
Temperature K | 100 (2) | 100 (2) | 100 (2) | 293 (2) |
Crystal system | triclinic | triclinic | monoclinic | monoclinic |
Space group | P | P | P21/n | P21/c |
a (Å) | 9.7268 (5) | 11.0947 (4) | 12.3661 (4) | 11.4074 (3) |
b (Å) | 9.9259 (5) | 11.3975 (5) | 15.4875 (4) | 15.4271 (4) |
c (Å) | 11.5160 (6) | 12.1621 (4) | 13.6765 (4) | 14.2363 (3) |
α (°) | 92.895 (4) | 92.688 (3) | 90.00 | 90.00 |
β (°) | 108.791 (5) | 106.584 (3) | 116.231 (4) | 92.094 (2) |
γ (°) | 98.226 (4) | 104.224 (4) | 90.00 | 90.00 |
Volume (Å3) | 1036.2 (1) | 1417.4 (1) | 2349.6 (1) | 2503.67 (11) |
Z | 2 | 2 | 2 | 2 |
Calculated density (g cm−3) | 1.909 | 1.873 | 1.621 | 1.617 |
μ (mm−1) | 4.950 | 4.380 | 1.857 | 1.754 |
Absorption correction | multi-scan | multi-scan | multi-scan | multi-scan |
F(000) | 590 | 800 | 1184 | 1264 |
Crystal size (mm) | 0.60 × 0.30 × 0.20 | 0.20 × 0.10 × 0.05 | 0.45 × 0.25 × 0.20 | 0.35 × 0.35 × 0.20 |
θ range (°) | 2.66 to 27.10 | 2.72 to 27.10 | 2.63 to 26.37 | 2.61 to 26.37 |
Reflections collected/unique | 7749/4571 | 10884/6261 | 16637/4764 | 10392/4993 |
RiNt | 0.0271 | 0.0340 | 0.0319 | 0.0326 |
Data/restraints/parameters | 4571/3/293 | 6261/0/381 | 4764/0/314 | 4993/0/360 |
GooF on F2 | 1.095 | 1.048 | 1.057 | 1.083 |
Final R indices[I > 2σ(I)] | R1 = 0.0448, wR2 = 0.0999 | R1 = 0.0409, wR2 = 0.0958 | R1 = 0.0316, wR2 = 0.0789 | R1 = 0.0352, wR2 = 0.0850 |
R indices(all data) | R1 = 0.0584, wR2 = 0.1075 | R1 = 0.0547, wR2 = 0.1054 | R1 = 0.0410, wR2 = 0.0842 | R1 = 0.0452, wR2 = 0.0919 |
Largest diff. peak/hole, e Å−3 | 1.144/−1.012 | 1.853/−0.558 | 1.143/−0.387 | 0.811/−0.419 |
1 | |||
Bond lengths (Å) | |||
Cu(1)‒N(1) | 1.951 (3) | Cu(1)‒O(1) | 1.912 (2) |
Cu(1)‒N(2) | 1.955 (3) | Cu(1)‒O(4) | 1.910 (3) |
Angle (°) | |||
O(4)–Cu(1)–O(1) | 88.80 (11) | N(1)–Cu(1)–N(2) | 94.37 (14) |
O(4)–Cu(1)–N(1) | 156.13 (12) | O(4)–Cu(1)–N(2) | 93.45 (12) |
O(1)–Cu(1)–N(1) | 92.83 (13) | O(1)–Cu(1)–N(2) | 156.70 (12) |
2 | |||
Bond lengths (Å) | |||
Cu(1)‒N(1) | 1.946 (3) | Cu(2)‒O(3) | 1.905 (2) |
Cu(1)‒O(1) | 1.918 (2) | Cu(2)‒N(2) | 1.925 (3) |
Cu(1)‒O(3) | 1.934 (2) | Cu(2)‒O(4) | 1.895 (2) |
Cu(1)-O(6) | 1.965 (3) | Cu(2)‒O(7) | 1.952 (3) |
Cu(1)‒O(1M) | 2.321 (3) | ||
Angles (°) | |||
O(1)–Cu(1)–O(3) | 168.39 (12) | N(1)–Cu(1)–O(1M) | 94.32 (13) |
O(1)–Cu(1)–N(1) | 93.04 (11) | O(6)–Cu(1)–O(1M) | 92.78 (12) |
O(3)–Cu(1)–N(1) | 84.24 (11) | O(4)–Cu(2)–O(3) | 178.70 (11) |
O(1)–Cu(1)–O(6) | 87.53 (10) | O(4)–Cu(2)–N(2) | 93.33 (11) |
O(3)–Cu(1)–O(6) | 93.79 (10) | O(3)–Cu(2)–N(2) | 85.39 (11) |
N(1)–Cu(1)–O(6) | 172.86 (12) | O(4)–Cu(2)–O(7) | 86.81 (11) |
O(1)–Cu(1)–O(1M) | 91.84 (11) | O(3)–Cu(2)–O(7) | 94.48 (11) |
O(3)–Cu(1)–O(1M) | 99.61 (11) | N(2)–Cu(2)–O(7) | 177.03 (13) |
3 | |||
Bond lengths (Å) | |||
Cu(1)‒O(1) | 1.882 (2) | Cu(2)‒O(2) | 1.911 (2) |
Cu(1)‒O(2) | 1.905 (2) | Cu(2)‒O(3) | 1.898 (2) |
Cu(1)‒O(4) | 1.951 (2) | Cu(2)‒O(5) | 1.991 (2) |
Cu(1)‒N(1) | 1.955 (2) | Cu(2)‒N(2) | 1.970 (2) |
Cu(2)‒O(3) 3a | 2.399 (2) | ||
Angles (°) | |||
O(1)–Cu(1)–O(2) | 178.33 (7) | O(2)–Cu(2)–N(2) | 84.89 (8) |
O(1)–Cu(1)–O(4) | 87.32 (8) | O(3)–Cu(2)–O(5) | 87.87 (7) |
O(2)–Cu(1)–O(4) | 93.96 (7) | O(2)–Cu(2)–O(5) | 94.31 (7) |
O(1)–Cu(1)–N(1) | 93.15 (8) | N(2)–Cu(2)–O(5) | 162.05 (8) |
O(2)–Cu(1)–N(1) | 85.69 (8) | O(3)–Cu(2)–O(3) 3a | 85.82 (7) |
O(4)–Cu(1)–N(1) | 174.11 (8) | O(2)–Cu(2)–O(3) 3a | 95.48 (7) |
O(3)–Cu(2)–O(2) | 177.47 (7) | N(2)–Cu(2)–O(3) 3a | 108.34 (7) |
O(3)–Cu(2)–N(2) | 92.63 (8) | O(5)–Cu(2)–O(3) 3a | 89.60 (7) |
4 | |||
Bond lengths (Å) | |||
Cu(1)‒O(1) | 1.883(2) | Cu(2)‒O(2) | 1.907(2) |
Cu(1)‒O(2) | 1.902(2) | Cu(2)‒O(3) | 1.903(2) |
Cu(1)‒O(4) | 1.943(2) | Cu(2)‒O(5) | 1.952(2) |
Cu(1)‒N(1) | 1.952(2) | Cu(2)‒N(2) | 1.955(2) |
Cu(2)‒O(3)4a | 2.485(2) | ||
Angles (°) | |||
O(1)–Cu(1)–O(2) | 178.67(8) | O(2)–Cu(2)–O(5) | 94.36(8) |
O(1)–Cu(1)–O(4) | 86.64(8) | O(3)–Cu(2)–N(2) | 93.08(9) |
O(2)–Cu(1)–O(4) | 94.69(8) | O(2)–Cu(2)–N(2) | 85.13(9) |
O(1)–Cu(1)–N(1) | 93.42(9) | O(5)–Cu(2)–N(2) | 166.83(8) |
O(2)–Cu(1)–N(1) | 85.26(9) | O(2)–Cu(2)–O(3)4a | 95.48(7) |
O(4)–Cu(1)–N(1) | 176.48(8) | O(3)–Cu(2)–O(3)4a | 86.13(7) |
O(3)–Cu(2)–O(2) | 177.87(8) | O(5)–Cu(2)–O(3)4a | 86.60(7) |
O(3)–Cu(2)–O(5) | 87.13(8) | N(2)–Cu(2)–O(3)4a | 106.56(7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osypiuk, D.; Cristóvão, B.; Bartyzel, A. New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations. Crystals 2020, 10, 1004. https://doi.org/10.3390/cryst10111004
Osypiuk D, Cristóvão B, Bartyzel A. New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations. Crystals. 2020; 10(11):1004. https://doi.org/10.3390/cryst10111004
Chicago/Turabian StyleOsypiuk, Dariusz, Beata Cristóvão, and Agata Bartyzel. 2020. "New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations" Crystals 10, no. 11: 1004. https://doi.org/10.3390/cryst10111004
APA StyleOsypiuk, D., Cristóvão, B., & Bartyzel, A. (2020). New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations. Crystals, 10(11), 1004. https://doi.org/10.3390/cryst10111004