Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals
Abstract
:1. Introduction
2. Calculation
3. Results
4. Discussion and Guidelines for Designing Lead-Free Piezoelectrics
- The one circled dot is at the coordinate of the unstrained PT.
- The three dots of MANbO3 are in the region where the effective charges of A and B are relatively low and high, respectively.
- The three dots of MAETiO3 are in the region where the charges of A and B are high and low, respectively.
- The two dots of (Ba, Na)(Ti, Nb)O3 are about in the middle of the regions of MANbO3 and MAETiO3.
- The one dot of BaZrO3 is where the charges of A and B are both high.
- The one dot of BNT is in the vicinity of PT.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuwata, J.; Uchino, K.; Nomura, S. Dielectric and piezoelectric properties of 0.91 Pb (Zn1/3Nb2/3) O3-0.09 PbTiO3 single crystals. Jpn. J. Appl. Phys. 1982, 21, 1298–1302. [Google Scholar] [CrossRef]
- Shrout, T.R.; Chang, Z.P.; Kim, N.; Markgraf, S. Dielectric behavior of single crystals near the (1−x) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectr. Lett. 1990, 12, 63–69. [Google Scholar] [CrossRef]
- Yamashita, Y.; Harada, K. Crystal growth and electrical properties of lead scandium niobate-lead titanate binary single crystals. Jpn. J. Appl. Phys. 1997, 36, 6039–6042. [Google Scholar] [CrossRef]
- Yasuda, N.; Ohwa, H.; Kume, M.; Yamashita, Y. Piezoelectric properties of a high curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 binary system single crystal near a morphotropic phase boundary. Jpn. J. Appl. Phys. 2000, 39, 66–68. [Google Scholar] [CrossRef]
- Sui, H.; Sun, H.; Liu, X.; Zhou, D.; Xu, R. Ferroelectric and dielectric behaviors of sol-gel derived perovskite PMN-PT/PZT heterostructures via compositional development: An interface-dependent study. J. Eur. Ceram. Soc. 2018, 38, 5382–5387. [Google Scholar] [CrossRef]
- Cole, S.S.; Espenschied, H. Lead titanate: Crystal structure, temperature of formation, and specific gravity data. J. Phys. Chem. 1937, 41, 445–451. [Google Scholar] [CrossRef]
- Megaw, H.D. Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 1946, 58, 133–152. [Google Scholar] [CrossRef]
- Cohen, R.E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138. [Google Scholar] [CrossRef]
- Takesue, N.; Ishibashi, K.; Asakura, K. Evaluation of covalency of ions in lead-free perovskite-type dielectric oxides. AIP Adv. 2017, 7, 105016. [Google Scholar] [CrossRef] [Green Version]
- Nagata, H.; Shinya, T.; Hiruma, Y.; Takenada, T.; Sakaguchi, I.; Haneda, H. Piezoelectric properties of bismuth sodium titanate ceramics. Ceram. Trans. 2005, 167, 213–221. [Google Scholar]
- Fan, P.; Zhang, Y.; Zhang, Q.; Xie, B.; Zhu, Y.; Mawat, M.A.; Ma, W.; Liu, K.; Xiao, J.; Zhang, H. Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 2018, 38, 4404–4413. [Google Scholar] [CrossRef]
- Kim, M.; Ito, R.; Kim, S.; Khanal, G.P.; Fujii, I.; Suzuki, T.S.; Uchikoshi, T.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3-BaTiO3 ceramics using electrophoretic deposition. J. Mater. Sci. 2018, 53, 2396–2404. [Google Scholar] [CrossRef]
- Zhou, X.; Qi, H.; Yan, Z.; Xue, G.; Luo, H.; Zhang, D. Large energy density with excellent stability in fine-grained (Bi0.5Na0.5)TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 2019, 39, 4053–4059. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, Y.; Fan, P.; Marwat, M.A.; Ma, W.; Liu, K.; Liu, H.; Xie, B.; Wang, K.; Koruza, J. Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics. Acta Mater. 2018, 156, 389–398. [Google Scholar] [CrossRef]
- Megaw, H.D. Ferroelectricity in Crystals; Methuen & Co. Ltd.: London, UK, 1957. [Google Scholar]
- Kujirai, T.; Takagi, Y.; Nagata, H.; Takenaka, T. Low sintering temperature and electrial properties on cu-doped (Bi1/2Na1/2)TiO3-based solid solution ceramics. In Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (ISAF) 2019, Lausanne, Switzerland, 14–19 July 2019. [Google Scholar] [CrossRef]
- Tuluk, A.Y.; Mahon, T.R.; Van Der Zwaag, S.; Groen, P. BiFeO3 synthesis by conventional solid-state reaction. In Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (ISAF) 2019, Lausanne, Switzerland, 14–19 July 2019. [Google Scholar] [CrossRef]
- Tachiyama, K.; Yasui, S.; Rao, B.N.; Dazai, T.; Usami, T.; Taniyama, T.; Katayama, T.; Hamasaki, Y.; Yu, J.; He, H.; et al. Magnetic properties of single crystal GaFeO3. MRS Adv. 2019, 4, 61–66. [Google Scholar] [CrossRef]
- Hill, N.A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 21, 477–485. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.C. Quantum, Theory of Molecules and Solids; McGraw Hill: New York, NY, USA, 1974; Volume 4. [Google Scholar]
- Adachi, H.; Tsukada, M.; Satoko, C. Discrete variational Xα cluster calculations. I. Application to metal clusters. J. Phys. Soc. Jpn. 1978, 45, 875–883. [Google Scholar] [CrossRef]
- Editorial Commitees of Encyclopedic Dictionary of Chemistry. Encyclopedic Dictionary of Chemistry Maruzen eBook Library; Kyoritsu Shuppan Co., Ltd.: Tokyo, Japan, 1963. [Google Scholar]
- Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Csizmadia, I.G. Theory and Practice of MO Calculations on Organic Molecules; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Rabe, K.; Ahn, C.H.; Tricsone, J.M. Physics of Ferroelectrics-Modern Perspective; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cowley, R.A.; Gvasaliya, S.N.; Lushnikov, S.; Roessli, B.; Rotaru, G.-M. Relaxing with relaxors: A review of relaxor ferroelectrics. Adv. Phys. 2011, 60, 229–327. [Google Scholar] [CrossRef]
- Kuwata, J.; Uchino, K.; Nomura, S. Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 1981, 37, 579–582. [Google Scholar] [CrossRef]
- Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, P.; Bousquet, C.; Konczewicz, L.; Gorelli, F.A.; Hull, S. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate. Phys. Rev. 2004, 70, 014108. [Google Scholar] [CrossRef]
- König, J.; Spreitzer, M.; Jancar, B.; Suvorov, D.; Samardzija, Z.; Popović, A. The thermal decomposition of K0.5Bi0.5TiO3 ceramics. J. Eur. Ceram. Soc. 2009, 29, 1695–1701. [Google Scholar] [CrossRef]
- Kainz, T.; Naderer, M.; Schutz, D.; Fruhwirth, O.; Mautner, F.; Reichmann, K. Solid state synthesis and sintering of solid solutions of BNT–xBKT. J. Eur. Ceram. Soc. 2014, 34, 3685–3697. [Google Scholar] [CrossRef]
- Taghaddos, E.; Charalambous, H.; Tsakalakos, T.; Safari, A. Electromechanical properties of flash sintered BNT-based piezoelectric ceramic. J. Eur. Ceram. Soc. 2019, 39, 2882–2888. [Google Scholar] [CrossRef]
Model | Ion | Color |
---|---|---|
PT | Pb | green, blue |
Ti | gold, purple | |
O | red, black | |
MANbO3 | MA | green, blue |
Nb | gold, purple | |
O | red, black | |
MAETiO3 | MAE | green, blue |
Ti | gold, purple | |
O | red, black | |
BaZrO3 | Ba | green, blue |
Zr | gold, purple | |
O | red, black | |
(Ba, Na)(Ti, Nb)O3 Ba-centered | Ba | green |
Na | blue | |
Ti | gold | |
Nb | purple | |
O | red, black | |
(Ba, Na)(Ti, Nb)O3 Na-centered | Na | green |
Ba | blue | |
Ti | gold | |
Nb | purple | |
O | red, black | |
(Ba, Na)Ti(O, Cl)3 Ba-centered | Ba | green |
Na | blue | |
Ti | gold, purple | |
O | red | |
Cl | black | |
(Ba, Na)Ti(O, Cl)3 Na-centered | Na | green |
Ba | blue | |
Ti | gold, purple | |
O | red | |
Cl | black | |
Na(Ti, Nb)(O, Cl)3 | Na | green, blue |
Ti | gold | |
Nb | purple | |
O | red | |
Cl | black | |
(Ba, Na)Ti(O, F)3 Ba-centered | Ba | green |
Na | blue | |
Ti | gold, purple | |
O | red | |
F | black | |
(Ba, Na)Ti(O, F)3 Na-centered | Na | green |
Ba | blue | |
Ti | gold, purple | |
O | red | |
F | black | |
Na(Ti, Nb)(O, F)3 | Na | green, blue |
Ti | gold | |
Nb | purple | |
O | red | |
F | black | |
(Ba, Na)Nb(O, N)3 Ba-centered | Ba | green |
Na | blue | |
Nb | gold, purple | |
O | red | |
N | black | |
(Ba, Na)Nb(O, N)3 Na-centered | Na | green |
Ba | blue | |
Nb | gold, purple | |
O | red | |
N | black | |
Ba(Ti, Nb)(O, N)3 | Ba | green, blue |
Ti | gold | |
Nb | purple | |
O | red | |
N | black |
Model | Crystal System | Lattice Parameter (nm) |
---|---|---|
Li2O | cubic | a = 0.461 |
Na2O | cubic | a = 0.555 |
K2O | cubic | a = 0.644 |
MgO | cubic | a = 0.421 |
CaO | cubic | a = 0.480 |
SrO | cubic | a = 0.5144 |
BaO | cubic | a = 0.55391 |
Double perovskites | a, b, c orthogonal, D2 | a = b = c = 0.4 2 = 0.8 |
Model | Effective Charge of MA |
---|---|
Li2O | 0.601 |
Na2O | 0.409 |
K2O | 0.561 |
Model | Effective Charge of MAE |
---|---|
MgO Mg-centered | 1.325 |
MgO O-centered | 1.295 |
CaO Ca-centered | 1.597 |
CaO O-centered | 1.584 |
SrO Sr-centered | 1.791 |
SrO O-centered | 1.762 |
BaO Ba-centered | 1.824 |
BaO O-centered | 1.800 |
Model | MA/MAE/Pb | Effective Charge of A | Ti/Zr/Nb | Effective Charge of B |
---|---|---|---|---|
LiNbO3 | MA | 0.703 | Nb | 3.020 |
NaNbO3 | MA | 0.608 | Nb | 3.007 |
KNbO3 | MA | 0.791 | Nb | 3.032 |
CaTiO3 | MAE | 1.581 | Ti | 2.451 |
SrTiO3 | MAE | 1.838 | Ti | 2.480 |
BaTiO3 | MAE | 1.900 | Ti | 2.507 |
BaZrO3 | MAE | 1.910 | Zr | 2.823 |
PbTiO3 | Pb | 1.302 | Ti | 2.369 |
Model | Pb | Ti |
---|---|---|
PbTiO3 95% | 1.381 | 2.584 |
PbTiO3 97.5% | 1.337 | 2.471 |
PbTiO3 100% | 1.302 | 2.369 |
PbTiO3 102.5% | 1.275 | 2.274 |
PbTiO3 105% | 1.254 | 2.188 |
Model | Ba/Na | A Averaged | Ti/Nb | B Averaged |
---|---|---|---|---|
(Ba, Na)(Ti, Nb)O3 ((Ba1/2Na1/2)(Ti1/2Nb1/2)O3) Ba-centered | Ba 1.900 Na 0.659 | 1.279 | Ti 2.592 Nb 2.832 | 2.712 |
(Ba, Na)(Ti, Nb)O3 ((Ba1/2Na1/2)(Ti1/2Nb1/2)O3) Na-centered | Ba 1.914 Na 0.607 | 1.261 | Ti 2.583 Nb 2.841 | 2.712 |
Model | A | A Averaged | B | B Averaged |
---|---|---|---|---|
(Ba, Na)Ti(O, Cl)3 ((Ba4Na4)Ti8(O20Cl4)) Ba-centered | Ba 1.920 Na 0.500 | 1.210 | Ti 2.344 | 2.344 |
(Ba, Na)Ti(O, Cl)3 ((Ba4Na4)Ti8O20Cl4) Na-centered | Ba 1.873 Na 0.459 | 1.166 | Ti 2.355 | 2.355 |
Na(Ti, Nb)(O, Cl)3 (Na8(Ti4Nb4)(O20Cl4)) | Na 0.445 | 0.445 | Ti 2.434 Nb 2.611 | 2.523 |
(Ba, Na)Ti(O, F)3 ((Ba4Na4)Ti8(O20F4)) Ba-centered | Ba 1.865 Na 0.523 | 1.194 | Ti 2.422 | 2.422 |
(Ba, Na)Ti(O, F)3 ((Ba4Na4)Ti8(O20F4)) Na-centered | Ba 1.856 Na 0.528 | 1.192 | Ti 2.423 | 2.423 |
Na(Ti, Nb)(O, F)3 (Na8(Ti4Nb4)(O20F4)) | Na 0.545 | 0.545 | Ti 2.542 Nb 2.761 | 2.651 |
(Ba, Na)Nb(O, N)3 ((Ba4Na4)Nb8(O20N4)) Ba-centered | Ba 1.912 Na 0.724 | 1.318 | Nb 2.983 | 2.983 |
(Ba, Na)Nb(O, N)3 ((Ba4Na4)Nb8(O20N4)) Na-centered | Ba 1.943 Na 0.609 | 1.276 | Nb 2.983 | 2.983 |
Ba(Ti, Nb)(O, N)3 (Ba8(Ti4Nb4)(O20N4)) | Ba 1.899 | 1.899 | Ti 2.589 Nb 2.817 | 2.703 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takesue, N.; Saito, J.-i. Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals. Crystals 2020, 10, 956. https://doi.org/10.3390/cryst10110956
Takesue N, Saito J-i. Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals. Crystals. 2020; 10(11):956. https://doi.org/10.3390/cryst10110956
Chicago/Turabian StyleTakesue, Naohisa, and Jun-ichi Saito. 2020. "Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals" Crystals 10, no. 11: 956. https://doi.org/10.3390/cryst10110956
APA StyleTakesue, N., & Saito, J. -i. (2020). Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals. Crystals, 10(11), 956. https://doi.org/10.3390/cryst10110956