The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities
Abstract
:1. Introduction
- To what degree can sequential XPCS analysis capture the dynamics of a material from relatively low intensity speckle patterns in the presence of significant pulse-to-pulse intensity variations typical of XFELs?
- What data analysis strategies can be developed to improve the determination of the time constants from such data sets?
2. Materials and Methods
2.1. Simulating the Speckle Pattern
2.2. Calculating the Time Correlations
3. Results
3.1. Simulating the Effect of Weak Speckle Intensities
3.2. Simulating the Effect of Highly Fluctuating Speckle Intensities
3.3. Reducing the Noise in the XPCS Analysis Based on XFEL-Like Datasets
- Apply a low (but positive) threshold to the two-time correlation. Calculate only using speckle images with the average photon number above this threshold;
- Fit the time scale from the calculated using Equation (3);
- Increase the intensity threshold and repeat the first two steps;
- Track the fitted uncertainties as a function of intensity threshold. will initially decrease due to reduced noise in the calculated ;
- will eventually increase upon further increasing the intensity threshold. This is where gets noisy again, as there are too few qualifying speckle pairs;
- We choose the “turning point” in as the threshold for qualifying shots from which to calculate and thus minimize the uncertainties in physical constants fitted from .
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
XPCS | X-ray photon correlation spectroscopy |
XFEL | X-ray free electron laser |
ROI | Region of interest |
SNR | Signal to noise ratio |
References
- Hill, N.A. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Das, S.; Robinson, J.A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27. [Google Scholar] [CrossRef]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Zunger, A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Jiang, Y.; Pillai, S.; Green, M.A. Grain boundary effects on the optical constants and Drude relaxation times of silver films. J. Appl. Phys. 2016, 120, 233109. [Google Scholar] [CrossRef]
- Assefa, T.A.; Cao, Y.; Banerjee, S.; Kim, S.; Kim, D.; Lee, H.; Kim, S.; Lee, J.H.; Park, S.Y.; Eom, I.; et al. Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films. Sci. Adv. 2020, 6, eaax2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokov, A.; Ye, Z.G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 2006, 41, 31–52. [Google Scholar] [CrossRef]
- Phelan, D.; Stock, C.; Rodriguez-Rivera, J.A.; Chi, S.; Leão, J.; Long, X.; Xie, Y.; Bokov, A.A.; Ye, Z.G.; Ganesh, P.; et al. Role of random electric fields in relaxors. Proc. Natl. Acad. Sci. USA 2014, 111, 1754–1759. [Google Scholar] [CrossRef] [Green Version]
- Krogstad, M.; Gehring, P.M.; Rosenkranz, S.; Osborn, R.; Ye, F.; Liu, Y.; Ruff, J.P.; Chen, W.; Wozniak, J.M.; Luo, H.; et al. The relation of local order to material properties in relaxor ferroelectrics. Nat. Mater. 2018, 17, 718–724. [Google Scholar] [CrossRef]
- Le Bolloc’h, D.; Jacques, V.; Kirova, N.; Dumas, J.; Ravy, S.; Marcus, J.; Livet, F. Observation of correlations up to the micrometer scale in sliding charge-density waves. Phys. Rev. Lett. 2008, 100, 096403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, M.; Mochrie, S.; Greytak, T.; Nagler, S.; Berman, L.; Held, G.; Stephenson, G. Observation of speckle by diffraction with coherent X-rays. Nature 1991, 352, 608–610. [Google Scholar] [CrossRef]
- Sinha, S.K.; Jiang, Z.; Lurio, L.B. X-ray Photon Correlation Spectroscopy Studies of Surfaces and Thin Films. Adv. Mater. 2014, 26, 7764–7785. [Google Scholar] [CrossRef] [PubMed]
- Sandy, A.R.; Zhang, Q.; Lurio, L.B. Hard x-ray photon correlation spectroscopy methods for materials studies. Annu. Rev. Mater. Res. 2018, 48, 167–190. [Google Scholar] [CrossRef]
- Hruszkewycz, S.; Sutton, M.; Fuoss, P.; Adams, B.; Rosenkranz, S.; Ludwig, K., Jr.; Roseker, W.; Fritz, D.; Cammarata, M.; Zhu, D.; et al. High contrast x-ray speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 2012, 109, 185502. [Google Scholar] [CrossRef] [PubMed]
- Roseker, W.; Hruszkewycz, S.; Lehmkühler, F.; Walther, M.; Schulte-Schrepping, H.; Lee, S.; Osaka, T.; Strüder, L.; Hartmann, R.; Sikorski, M.; et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 2018, 9, 1704. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Decker, F.J.; Turner, J.; Song, S.; Robert, A.; Zhu, D. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation. J. Synchrotron Radiat. 2018, 25, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Montana-Lopez, J.; Fuoss, P.; Sutton, M.; Zhu, D. Accurate contrast determination for X-ray speckle visibility spectroscopy. J. Synchrotron Radiat. 2020, 27, 999–1007. [Google Scholar] [CrossRef]
- Carnis, J.; Cha, W.; Wingert, J.; Kang, J.; Jiang, Z.; Song, S.; Sikorski, M.; Robert, A.; Gutt, C.; Chen, S.W.; et al. Demonstration of feasibility of X-ray free electron laser studies of dynamics of nanoparticles in entangled polymer melts. Sci. Rep. 2014, 4, 6017. [Google Scholar] [CrossRef] [Green Version]
- Lehmkühler, F.; Kwaśniewski, P.; Roseker, W.; Fischer, B.; Schroer, M.A.; Tono, K.; Katayama, T.; Sprung, M.; Sikorski, M.; Song, S.; et al. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser. Sci. Rep. 2015, 5, 17193. [Google Scholar] [CrossRef]
- Roseker, W.; Lee, S.; Walther, M.; Schulte-Schrepping, H.; Franz, H.; Gray, A.; Sikorski, M.; Fuoss, P.H.; Stephenson, G.B.; Robert, A.; et al. Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS. In X-ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications; International Society for Optics and Photonics: The Hague, The Netherlands, 2012; Volume 8504, p. 85040I. [Google Scholar]
- Castagna, J.; Murphy, B.; Bozek, J.; Berrah, N. X-ray split and delay system for soft x-rays at LCLS. J. Phys. Conf. Ser. 2013, 425, 152021. [Google Scholar] [CrossRef]
- Osaka, T.; Hirano, T.; Yabashi, M.; Sano, Y.; Tono, K.; Inubushi, Y.; Sato, T.; Ogawa, K.; Matsuyama, S.; Ishikawa, T.; et al. Development of split-delay x-ray optics using Si (220) crystals at SACLA. In X-ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications II; International Society for Optics and Photonics: The Hague, The Netherlands, 2014; Volume 9210, p. 921009. [Google Scholar]
- Seaberg, M.; Holladay, B.; Lee, J.; Sikorski, M.; Reid, A.; Montoya, S.; Dakovski, G.; Koralek, J.; Coslovich, G.; Moeller, S.; et al. Nanosecond x-ray photon correlation spectroscopy on magnetic skyrmions. Phys. Rev. Lett. 2017, 119, 067403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Dunne, M.; Fuoss, P.; Robert, A.; Zhu, D.; Osaka, T.; Yabashi, M.; Sutton, M. Realizing split-pulse x-ray photon correlation spectroscopy to measure ultrafast dynamics in complex matter. Phys. Rev. Res. 2020, 2, 023099. [Google Scholar] [CrossRef]
- Decking, W.; Abeghyan, S.; Abramian, P.; Abramsky, A.; Aguirre, A.; Albrecht, C.; Alou, P.; Altarelli, M.; Altmann, P.; Amyan, K.; et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 2020, 14, 391–397. [Google Scholar] [CrossRef]
- Zhang, Q.; Dufresne, E.M.; Narayanan, S.; Maj, P.; Koziol, A.; Szczygiel, R.; Grybos, P.; Sutton, M.; Sandy, A.R. Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector. J. Synchrotron Radiat. 2018, 25, 1408–1416. [Google Scholar] [CrossRef]
- Wiedorn, M.O.; Oberthür, D.; Bean, R.; Schubert, R.; Werner, N.; Abbey, B.; Aepfelbacher, M.; Adriano, L.; Allahgholi, A.; Al-Qudami, N.; et al. Megahertz serial crystallography. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lehmkühler, F.; Dallari, F.; Jain, A.; Sikorski, M.; Möller, J.; Frenzel, L.; Lokteva, I.; Mills, G.; Walther, M.; Sinn, H.; et al. Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc. Natl. Acad. Sci. USA 2020, 117, 24110–24116. [Google Scholar] [CrossRef]
- Sutton, M.; Laaziri, K.; Livet, F.; Bley, F. Using coherence to measure two-time correlation functions. Opt. Express 2003, 11, 2268–2277. [Google Scholar] [CrossRef]
- Amann, J.; Berg, W.; Blank, V.; Decker, F.J.; Ding, Y.; Emma, P.; Feng, Y.; Frisch, J.; Fritz, D.; Hastings, J.; et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 2012, 6, 693–698. [Google Scholar] [CrossRef]
- Lee, S.; Roseker, W.; Gutt, C.; Fischer, B.; Conrad, H.; Lehmkühler, F.; Steinke, I.; Zhu, D.; Lemke, H.; Cammarata, M.; et al. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt. Express 2013, 21, 24647–24664. [Google Scholar] [CrossRef] [Green Version]
- Falus, P.; Lurio, L.; Mochrie, S. Optimizing the signal-to-noise ratio for X-ray photon correlation spectroscopy. J. Synchrotron Radiat. 2006, 13, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Graafsma, H. Impact of aperturing and pixel size on XPCS using AGIPD. J. Instrum. 2012, 7, C02064. [Google Scholar] [CrossRef]
- Schatzel, K. Noise on photon correlation data. I. Autocorrelation functions. Quantum Opt. J. Eur. Opt. Soc. Part B 1990, 2, 287. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Sheyfer, D.; Jiang, Z.; Maddali, S.; You, H.; Wang, B.-X.; Ye, Z.-G.; Dufresne, E.M.; Zhou, H.; Stephenson, G.B.; et al. The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities. Crystals 2020, 10, 1109. https://doi.org/10.3390/cryst10121109
Cao Y, Sheyfer D, Jiang Z, Maddali S, You H, Wang B-X, Ye Z-G, Dufresne EM, Zhou H, Stephenson GB, et al. The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities. Crystals. 2020; 10(12):1109. https://doi.org/10.3390/cryst10121109
Chicago/Turabian StyleCao, Yue, Dina Sheyfer, Zhang Jiang, Siddharth Maddali, Hoydoo You, Bi-Xia Wang, Zuo-Guang Ye, Eric M. Dufresne, Hua Zhou, G. Brian Stephenson, and et al. 2020. "The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities" Crystals 10, no. 12: 1109. https://doi.org/10.3390/cryst10121109
APA StyleCao, Y., Sheyfer, D., Jiang, Z., Maddali, S., You, H., Wang, B. -X., Ye, Z. -G., Dufresne, E. M., Zhou, H., Stephenson, G. B., & Hruszkewycz, S. O. (2020). The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities. Crystals, 10(12), 1109. https://doi.org/10.3390/cryst10121109