The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S.Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; et al. Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures. Nano Lett. 2005, 5, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Schilling, A.; Kumar, A.; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 2013, 4, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.M.; Sreenivasulu, G.; Zhuang, X.; Tang, X.; Gao, M.; Xu, J.; Li, J.; Zhang, J.; Srinivasan, G.; Viehland, D. A Highly Efficient Self-Biased Nickel-Zinc Ferrite/Metglas/PZT Magnetoelectric Gyrator. Phys. Status Solidi (RRL) Rapid Res. Lett. 2018, 12, 1800043. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Greve, H.; Quandt, E.; Knöchel, R.; Wagner, B. MEMS magnetic field sensor based on magnetoelectric composites. J. Micromech. Microeng. 2012, 22, 65024. [Google Scholar] [CrossRef]
- Bur, A.; Wong, K.; Zhao, P.; Lynch, C.S.; Amiri, P.K.; Wang, K.L.; Carman, G.P. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl. Phys. Lett. 2011, 98, 262504. [Google Scholar] [CrossRef]
- Jain, A.; Wang, Y.; Wang, N.; Li, Y.; Wang, F. Emergence of ferrimagnetism along with magnetoelectric coupling in Ba0.83Sr0.07Ca0.10TiO3/BaFe12O19 multiferroic composites. J. Alloys Compd. 2020, 818, 152838. [Google Scholar] [CrossRef]
- Jain, A.; Wang, Y.; Wang, N.; Li, Y.; Wang, F. Existence of heterogeneous phases with significant improvement in electrical and magnetoelectric properties of BaFe12O19/BiFeO3 multiferroic ceramic composites. Ceram. Int. 2019, 45, 22889–22898. [Google Scholar] [CrossRef]
- Belik, A.A. Polar and nonpolar phases of BiMO3: A review. J. Solid State Chem. 2012, 195, 32–40. [Google Scholar] [CrossRef]
- Jeen, H.; Singh-Bhalla, G.; Mickel, P.R.; Voigt, K.; Morien, C.; Tongay, S.; Hebard, A.F.; Biswas, A. Growth and characterization of multiferroic BiMnO3 thin films. J. Appl. Phys. 2011, 109, 74104. [Google Scholar] [CrossRef] [Green Version]
- Son, J.Y.; Shin, Y.H. Multiferroic BiMnO3 thin films with double SrTiO3 buffer layers. Appl. Phys. Lett. 2008, 93, 62902. [Google Scholar] [CrossRef]
- Dos Santos, A.M.; Cheetham, A.K.; Atou, T.; Syono, Y.; Yamaguchi, Y.; Ohoyama, K.; Chiba, H.; Rao, C.N.R. Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys. Rev. B 2002, 66, 064425. [Google Scholar] [CrossRef]
- De Luca, G.M.; Preziosi, D.; Chiarella, F.; Di Capua, R.; Gariglio, S.; Lettieri, S.; Salluzzo, M. Ferromagnetism and ferroelectricity in epitaxial BiMnO3 ultra-thin films. Appl. Phys. Lett. 2013, 103, 062902. [Google Scholar] [CrossRef] [Green Version]
- Montanari, E.; Righi, L.; Calestani, G.; Migliori, A.; Gilioli, E.; Bolzoni, F. Room Temperature Polymorphism in Metastable BiMnO3 Prepared by High-Pressure Synthesis. Chem. Mater. 2005, 17, 1765–1773. [Google Scholar] [CrossRef]
- Toulemonde, P.; Darie, C.; Goujon, C.; Legendre, M.; Mendonça, T.; Álvarez-Murga, M.; Simonet, V.; Bordet, P.; Bouvier, P.; Kreisel, J.; et al. Single crystal growth of BiMnO3 under high pressure–high temperature. High Press. Res. 2009, 29, 600–604. [Google Scholar] [CrossRef]
- Muta, H.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 2003, 350, 292–295. [Google Scholar] [CrossRef]
- Iwashina, K.; Kudo, A. Rh-Doped SrTiO3Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133, 13272–13275. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.-I.; Ohsato, H. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun. 2004, 129, 279–284. [Google Scholar] [CrossRef]
- Ahadi, K.; Galletti, L.; Li, Y.; Salmani-Rezaie, S.; Wu, W.; Stemmer, S. Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 2019, 5, eaaw0120. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.; Petric, A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J. Eur. Ceram. Soc. 2002, 22, 1673–1681. [Google Scholar] [CrossRef]
- Rowley, S.E.; Spalek, L.J.; Smith, R.P.; Dean, M.P.M.; Itoh, M.; Scott, J.F.; Lonzarich, G.G.; Saxena, S.S. Ferroelectric quantum criticality. Nat. Phys. 2014, 10, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Itoh, M.; Wang, R.; Inaguma, Y.; Yamaguchi, T.; Shan, Y.J.; Nakamura, T. Ferroelectricity Induced by Oxygen Isotope Exchange in Strontium Titanate Perovskite. Phys. Rev. Lett. 1999, 82, 3540–3543. [Google Scholar] [CrossRef]
- Lemanov, V.V.; Smirnova, E.P.; Syrnikov, P.P.; Tarakanov, E.A. Phase transitions and glasslike behavior in Sr1−xBaxTiO3. Phys. Rev. B 1996, 54, 3151–3157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiu, T.; Zhang, J.; Baldini, E.; Lu, J.; Rappe, A.M.; Nelson, K.A. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 2019, 364, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, J.; Han, Y.; Chen, B.; Li, X. Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater. Sci. Eng. B 2004, 110, 11–17. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Li, X.; Liu, S.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W.; Fang, W.; Liu, Y. Polymerizable complex synthesis of SrTiO3:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light. Appl. Catal. B Environ. 2016, 192, 145–151. [Google Scholar] [CrossRef]
- Silva, E.R.; Curi, M.; Furtado, J.; Ferraz, H.; Secchi, A.R. The effect of calcination atmosphere on structural properties of Y-doped SrTiO3 perovskite anode for SOFC prepared by solid-state reaction. Ceram. Int. 2019, 45, 9761–9770. [Google Scholar] [CrossRef]
- Duong, H.P.; Mashiyama, T.; Kobayashi, M.; Iwase, A.; Kudo, A.; Asakura, Y.; Yin, S.; Kakihana, M.; Kato, H. Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method. Appl. Catal. B Environ. 2019, 252, 222–229. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Q.; Li, J.; Zhu, X.; Zhang, M.; Zhang, T. Photocatalytic Properties of SrTiO3 Nanocubes Synthesized Through Molten Salt Modified Pechini Route. J. Nanosci. Nanotechnol. 2016, 16, 12321–12325. [Google Scholar] [CrossRef]
- Shevchuk, Y.A.; Shevchuk, Y.A.; Korchagina, S.K.; Ivanova, V.V. Dielectric and Magnetic Properties of SrTiO3–BiMnO3 Solid Solutions. Inorg. Mater. 2004, 40, 292–294. [Google Scholar] [CrossRef]
- Salluzzo, M.; Gariglio, S.; Stornaiuolo, D.; Sessi, V.; Rusponi, S.; Piamonteze, C.; De Luca, G.M.; Minola, M.; Marré, D.; Gadaleta, A.; et al. Origin of Interface Magnetism in BiMnO3/SrTiO3 LaAlO3/SrTiO3 Heterostructures. Phys. Rev. Lett. 2013, 111, 087204. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Lv, M.; Liu, G.; Xu, X. Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Appl. Surf. Sci. 2017, 391, 535–541. [Google Scholar] [CrossRef]
- Woodward, D.I.; Reaney, I.M. A structural study of ceramics in the (BiMnO3)x–(PbTiO3)1−x solid solution series. J. Phys. Condens. Matter 2004, 16, 8823–8834. [Google Scholar] [CrossRef]
- Karoblis, D.; Mazeika, K.; Baltrunas, D.; Lukowiak, A.; Strek, W.; Zarkov, A.; Kareiva, A. Novel synthetic approach to the preparation of single-phase BixLa1−xMnO3+δ solid solutions. J. Sol-Gel Sci. Technol. 2019, 93, 650–656. [Google Scholar] [CrossRef]
- Sharma, D.; Upadhyay, S.; Satsangi, V.R.; Shrivastav, R.; Waghmare, U.V.; Dass, S. Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode. J. Phys. Chem. C 2014, 118, 25320–25329. [Google Scholar] [CrossRef]
- Kim, S.; Choi, H.; Lee, M.; Park, J.; Kim, D.; Do, D.; Kim, M.; Song, T.K.; Kim, W. Electrical properties and phase of BaTiO3–SrTiO3 solid solution. Ceram. Int. 2013, 39, S487–S490. [Google Scholar] [CrossRef]
- Karoblis, D.; Zarkov, A.; Mazeika, K.; Baltrunas, D.; Niaura, G.; Beganskiene, A.; Kareiva, A. Sol-gel synthesis, structural, morphological and magnetic properties of BaTiO3–BiMnO3 solid solutions. Ceram. Int. 2020, 46, 16459–16464. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Perry, C.H.; Khanna, B.N.; Rupprecht, G. Infrared Studies of Perovskite Titanates. Phys. Rev. 1964, 135, A408–A412. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Gaur, A.; Yadav, K. Effect of doping on optical properties in BiMn1−x(TE)xO3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol-gel methods. Appl. Phys. A 2017, 123, 429. [Google Scholar] [CrossRef]
- Ocaña, M. Uniform particles of manganese compounds obtained by forced hydrolysis of manganese (II) acetate. Colloid Polym. Sci. 2000, 278, 443–449. [Google Scholar] [CrossRef]
- Sinusaite, L.; Popov, A.; Antuzevics, A.; Mazeika, K.; Baltrunas, D.; Yang, J.-C.; Horng, J.L.; Shi, S.; Sekino, T.; Ishikawa, K.; et al. Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties. Mater. Sci. Eng. C 2020, 112, 110918. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D.; Venkatesan, M.; Stamenov, P. Surface magnetism of strontium titanate. J. Phys. Condens. Matter 2016, 28, 485001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabelsi, H.; Bejar, M.; Dhahri, E.; Sajieddine, M.; Valente, M.A.; Zaoui, A.; Moez, B. Effect of the oxygen deficiencies creation on the suppression of the diamagnetic behaviour of SrTiO3 compound. J. Alloys Compd. 2016, 680, 560–564. [Google Scholar] [CrossRef]
- Rao, S.S.; Lee, Y.F.; Prater, J.T.; Smirnov, A.I.; Narayan, J. Laser annealing induced ferromagnetism in SrTiO3 single crystal. Appl. Phys. Lett. 2014, 105, 042403. [Google Scholar] [CrossRef]
- Kittel, C.; McEuen, P. Introduction to Solid State Physics; Wiley: Hoboken, NJ, USA, 1996; Volume 8. [Google Scholar]
- Belik, A.A.; Takayama-Muromachi, E. Magnetic Properties of BiMnO3 Studied with Dc and Ac Magnetization and Specific Heat. Inorg. Chem. 2006, 45, 10224–10229. [Google Scholar] [CrossRef]
- Dwight, K.; Menyuk, N. Magnetic Properties of Mn3O4 and the Canted Spin Problem. Phys. Rev. 1960, 119, 1470–1479. [Google Scholar] [CrossRef]
- Srinivasan, G.; Seehra, M.S. Magnetic properties of Mn3O4 and a solution of the canted-spin problem. Phys. Rev. B 1983, 28, 1–7. [Google Scholar] [CrossRef]
- Stanojević, Z.M.; Branković, Z.; Jagličić, Z.; Jagodič, M.; Mančić, L.; Bernik, S.; Rečnik, A. Structural and magnetic properties of nanocrystalline bismuth manganite obtained by mechanochemical synthesis. J. Nanopart. Res. 2011, 13, 3431–3439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karoblis, D.; Diliautas, R.; Raudonyte-Svirbutaviciene, E.; Mazeika, K.; Baltrunas, D.; Beganskiene, A.; Zarkov, A.; Kareiva, A. The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions. Crystals 2020, 10, 1125. https://doi.org/10.3390/cryst10121125
Karoblis D, Diliautas R, Raudonyte-Svirbutaviciene E, Mazeika K, Baltrunas D, Beganskiene A, Zarkov A, Kareiva A. The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions. Crystals. 2020; 10(12):1125. https://doi.org/10.3390/cryst10121125
Chicago/Turabian StyleKaroblis, Dovydas, Ramunas Diliautas, Eva Raudonyte-Svirbutaviciene, Kestutis Mazeika, Dalis Baltrunas, Aldona Beganskiene, Aleksej Zarkov, and Aivaras Kareiva. 2020. "The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions" Crystals 10, no. 12: 1125. https://doi.org/10.3390/cryst10121125
APA StyleKaroblis, D., Diliautas, R., Raudonyte-Svirbutaviciene, E., Mazeika, K., Baltrunas, D., Beganskiene, A., Zarkov, A., & Kareiva, A. (2020). The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions. Crystals, 10(12), 1125. https://doi.org/10.3390/cryst10121125