Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
- (1)
- As the annealing temperature increases, the ∑3 grain boundaries gradually becomes straight from curve. The grain sizes of the annealed samples were mostly in the sub-micron. After high temperature annealing, the ultra-fine grain structure with an average size in the micron level were still maintained. The CoCrNi MEA after cryorolling and subsequent annealing had a high proportion of ultra-fine (0–0.25 μm) grain size distribution and the upper limit of grain size was lower, compared with other rolled sample. Meanwhile, the asymmetrically rolled and annealed samples had an obvious two-stage grain size distribution. Asymmetrically cryorolled samples still remained heterogeneous grain size characteristics after high temperature annealing with finer small-grain and lower large-scale grain size.
- (2)
- Annealed and recrystallized samples formed similar texture components and texture strength increased with increasing annealing temperature. After annealing, the α-fiber textures such as G, G/B, Bs, A, and S textures were retained. A few orientations generated by annealing twinning were also observed. The asymmetric rolled and annealed samples exhibited stronger random components than symmetric rolled and annealed samples. The annealing temperature had little effect on the volume fraction of different texture components.
- (3)
- The hardness obtained after cryorolling and asymmetric cryorolling are similar, which are relatively higher than the hardness obtained after asymmetric rolling. It is mainly attributed to that deformation temperature has more significant effect on improving the mechanical properties, compared to the shear strain introduced by asymmetric rolling.
Author Contributions
Funding
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Liang, Y.J.; Wang, L.; Wen, Y.; Cheng, B.; Wu, Q.; Cao, T.; Xiao, Q.; Xue, Y.; Sha, G.; Wang, Y.; et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 2018, 9, 4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Wang, J.; Yang, H.; Ji, S.; Yu, H.; Liu, Z. Strengthening CoCrNi medium-entropy alloy by tuning lattice defects. Scr. Mater. 2020, 188, 216–221. [Google Scholar] [CrossRef]
- Du, X.H.; Li, W.P.; Chang, H.T.; Yang, T.; Duan, G.S.; Wu, B.L.; Huang, J.C.; Chen, F.R.; Liu, C.T.; Chuang, W.S.; et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat. Commun. 2020, 11, 2390. [Google Scholar] [CrossRef]
- Wen, R.; You, C.; Zeng, L.; Wang, H.; Zhang, X. Achieving a unique combination of strength and ductility in CrCoNi medium-entropy alloy via heterogeneous gradient structure. J. Mater. Sci. 2020, 55, 12544–12553. [Google Scholar] [CrossRef]
- Feng, X.; Yang, H.; Fan, R.; Zhang, W.; Meng, F.; Gan, B.; Lu, Y. Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance. Mater. Sci. Eng. A 2020, 788, 139591. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Li, K.; Guo, X.Y.; Liu, B.; Long, Z.Y.; Liu, Y. Effect of WC grain size on mechanical properties and microstructures of cemented carbide with medium entropy alloy Co-Ni-Fe binder. J. Cent. South Univ. 2020, 27, 1146–1157. [Google Scholar] [CrossRef]
- Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015, 99, 247–258. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Xia, S.; Gao, M.C.; Yang, T.; Liaw, P.K.; Zhang, Y. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 2016, 480, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Chen, J.X.; Liu, T.W.; Li, C.; Chen, Y.; Dai, L.H. Superior strength-ductility CoCrNi medium-entropy alloy wire. Scr. Mater. 2020, 181, 19–24. [Google Scholar] [CrossRef]
- Yeh, J.W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Jian, W.R.; Xie, Z.; Xu, S.; Su, Y.; Yao, X.; Beyerlein, I.J. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 2020, 199, 352–369. [Google Scholar] [CrossRef]
- Kucza, W.; Dąbrowa, J.; Cieślak, G.; Berent, K.; Kulik, T.; Danielewski, M. Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J. Alloy. Compd. 2018, 731, 920–928. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E.P. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 2017, 128, 292–303. [Google Scholar] [CrossRef]
- Sathiyamoorthi, P.; Bae, J.W.; Asghari-Rad, P.; Park, J.M.; Kim, J.G.; Kim, H.S. Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion. Entropy 2018, 20, 849. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yuan, F.; Yang, M.; Jiang, P.; Ma, E.; Wu, X. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater. 2018, 148, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yan, D.; Yuan, F.; Jiang, P.; Ma, E.; Wu, X. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA 2018, 115, 7224–7229. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Li, X.; Dong, Z.; Li, W.; Huang, S.; Meng, D.; Lai, X.; Liu, T.; Zhu, S.; Vitos, L. Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 2018, 149, 388–396. [Google Scholar] [CrossRef]
- Jo, Y.H.; Jung, S.; Choi, W.M.; Sohn, S.S.; Kim, H.S.; Lee, B.J.; Kim, N.J.; Lee, S. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 2017, 8, 15719. [Google Scholar] [CrossRef] [PubMed]
- Slone, C.E.; Chakraborty, S.; Miao, J.; George, E.P.; Mills, M.J.; Niezgoda, S.R. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Mater. 2018, 158, 38–52. [Google Scholar] [CrossRef]
- Wu, Z.; Parish, C.M.; Bei, H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloy. Compd. 2015, 647, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Won, J.W.; Lee, S.; Park, S.H.; Kang, M.; Lim, K.R.; Park, C.H.; Na, Y.S. Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling. J. Alloy Compd. 2018, 742, 290–295. [Google Scholar] [CrossRef]
- Yu, H.; Lu, C.; Tieu, A.K.; Li, H.J.; Godbole, A.; Zhang, S. Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: A review. Adv. Eng. Mater. 2016, 18, 754–769. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.T.; Hou, L.G.; Ma, C.Q.; Zuo, J.R.; Cui, H.; Zhuang, L.Z.; Zhang, J.S. Mechanical properties and microstructures of 5052 Al alloy processed by asymmetric cryorolling. Mater. Sci. Forum 2016, 850, 823–828. [Google Scholar] [CrossRef]
- Yu, H.; Tieu, K.; Lu, C.; Lou, Y.; Liu, X.; Godbole, A.; Kong, C. Tensile fracture of ultrafine grained aluminum 6061 sheets by asymmetric cryorolling for microforming. Int. J. Damage Mech. 2014, 23, 1077–1095. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, L.; Chai, L.; Li, J.; Lu, C.; Godbole, A.; Wang, H.; Kong, C. High thermal stability and excellent mechanical properties of ultrafine-grained high-purity copper sheets subjected to asymmetric cryorolling. Mater. Charact. 2019, 153, 34–45. [Google Scholar] [CrossRef]
- Yu, H.; Du, Q.; Godbole, A.; Lu, C.; Kong, C. Improvement in strength and ductility of asymmetric-cryorolled copper sheets under low-temperature annealing. Metall. Mater. Trans. A 2018, 49, 4398–4403. [Google Scholar] [CrossRef]
- Yu, H.; Lu, C.; Tieu, A.K.; Li, H.; Godbole, A.; Kong, C.; Zhao, X. Simultaneous grain growth and grain refinement in bulk ultrafine-grained copper under tensile deformation at room temperature. Metall. Mater. Trans. A 2016, 47, 3785–3789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, Y.; Bhatta, L.; Li, C.; Gan, B.; Kong, C.; Wang, Y.; Yu, H. Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing. Mater. Today Commun. 2020. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Liu, J.; Kong, C.; Wang, Y.; Tandon, P.; Pesin, A.; Zhilyaev, A.P.; Yu, H. Superior strengthening effect on heterogeneous lamellar structure in medium entropy alloy CrCoNi processed by asymmetric cryorolling. Under reviewing.
- Okamoto, N.L.; Fujimoto, S.; Kambara, Y.; Kawamura, M.; Chen, Z.M.T.; Matsunoshita, H.; Tanaka, K.; Inui, H.; George, E.P. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 2016, 6, 35863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.H.; Jiao, Z.B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.T.; et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Tang, Q.; Cai, X.; Dai, P. Grain boundary character distribution in CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing. Heat Treat. Met. 2016, 41, 217–221. [Google Scholar]
- Thomson, C.B.; Randle, V. “Fine tuning” at Σ3n boundaries in nickel. Acta Mater. 1997, 45, 4909–4916. [Google Scholar] [CrossRef]
- Randle, V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 1999, 47, 4187–4196. [Google Scholar] [CrossRef]
- Dan Sathiaraj, G.; Skrotzki, W.; Pukenas, A.; Schaarschuch, R.; Jose Immanuel, R.; Panigrahi, S.K.; Arout Chelvane, J.; Satheesh Kumar, S.S. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy. Intermetallics 2018, 101, 87–98. [Google Scholar] [CrossRef]
- Beke, D.L.; Erdélyi, G. On the diffusion in high-entropy alloys. Mater. Lett. 2016, 164, 111–113. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P.P.; Tsai, C.W.; Yeh, J.W. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P.P. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater. Charact. 2015, 109, 189–197. [Google Scholar] [CrossRef]
- Bhattacharjee, P.P.; Sathiaraj, G.D.; Zaid, M.; Gatti, J.R.; Lee, C.; Tsai, C.W.; Yeh, J.W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloy. Compd. 2014, 587, 544–552. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Ahmed, M.Z.; Bhattacharjee, P.P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J. Alloy. Compd. 2016, 664, 109–119. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Lee, C.; Tsai, C.W.; Yeh, J.W.; Bhattacharjee, P.P. Evolution of microstructure and crystallographic texture in severely cold rolled high entropy equiatomic CoCrFeMnNi alloy during annealing. IOP Conf. Ser. Mater. Sci. Eng. 2015, 82, 012068. [Google Scholar] [CrossRef]
- Jia, N.; Eisenlohr, P.; Roters, F.; Raabe, D.; Zhao, X. Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 2012, 60, 3415–3434. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P.P. Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy. J. Alloy. Compd. 2015, 647, 82–96. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Pukenas, A.; Skrotzki, W. Texture formation in face-centered cubic high-entropy alloys. J. Alloy. Compd. 2020, 826, 154183. [Google Scholar] [CrossRef]
- Haase, C.; Barrales-Mora, L.A. Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 2018, 150, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, M.; Guo, D.; Ma, T.; Zhang, Z.; Li, X.; Zhang, G.; Zhang, X. Extraordinary toughening by cryorolling in Zr. Adv. Eng. Mater. 2014, 16, 167–170. [Google Scholar] [CrossRef]
- D’yakonov, G.S.; Zherebtsov, S.V.; Klimova, M.V.; Salishchev, G.A. Microstructure evolution of commercial-purity titanium during cryorolling. Phys. Met. Metall. 2015, 116, 182–188. [Google Scholar] [CrossRef]
- Yu, H.; Yan, M.; Li, J.; Godbole, A.; Lu, C.; Tieu, K.; Li, H.; Kong, C. Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling. Mater. Sci. Eng. A 2018, 710, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, Y.; Wang, L.; Wang, H.; Kong, C.; Pesin, A.; Zhilyaev, A.P.; Yu, H. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling. Acta Metall. Sin. Engl. Lett. 2020, 33, 871–880. [Google Scholar] [CrossRef]
Texture Component | Symbol | Euler Angle | Miller Indices |
---|---|---|---|
Cube(C) | 0, 0, 0 | {001}<100> | |
Copper(Cu) | 90, 35, 45 | {112}<111> | |
Goss(G) | 0, 45, 0 | {110}<001> | |
Brass(Bs) | 35, 45, 0 | {110}<112> | |
S | 59, 37, 63 | {123}<634> | |
G/B | 17, 45, 0 | {110}<115> | |
A | 55, 45, 0 | {110}<111> | |
Rotated Goss(Rt-G) | 90, 45, 0 | {110}<110> | |
BR | 80, 31, 35 | {236}<385> | |
M | 80, 30, 65 | {13 6 25}<20 15 14> | |
D | 90, 25, 45 | {113}<332> | |
K | 27, 64, 14 | {142}<211> |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, J.; Bhatta, L.; Kong, C.; Yu, H. Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy. Crystals 2020, 10, 1154. https://doi.org/10.3390/cryst10121154
Wu Y, Liu J, Bhatta L, Kong C, Yu H. Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy. Crystals. 2020; 10(12):1154. https://doi.org/10.3390/cryst10121154
Chicago/Turabian StyleWu, Yuze, Juan Liu, Laxman Bhatta, Charlie Kong, and Hailiang Yu. 2020. "Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy" Crystals 10, no. 12: 1154. https://doi.org/10.3390/cryst10121154
APA StyleWu, Y., Liu, J., Bhatta, L., Kong, C., & Yu, H. (2020). Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy. Crystals, 10(12), 1154. https://doi.org/10.3390/cryst10121154