Nanosphere Lithography for Structuring Polycrystalline Diamond Films
Abstract
:1. Introduction
2. Materials and Methods
- Self-assembled mask preparation:
- Mask patterning using plasma etching:
- Mask lift-off:
- Diamond deposition and etching:
3. Results and Discussion
3.1. Fabrication of Diamond Nanostructures Using NSL
3.1.1. Hexagonal Close-Packed Arrays
3.1.2. Spherical, Ellipsoidal, and Pyramidal Nanostructures
3.1.3. Metallic Nanostructures
3.1.4. Array of Holes
- Periodic holes
- Unordered pores
3.2. Pros and Cons of the Nanosphere Lithography for Diamond Structuring
3.3. Potential Applications of Nanostructures Created Using NSL
3.3.1. Hexagonal Close-Packed Arrays
3.3.2. Metallic Nanostructures
3.3.3. Arrays of Holes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, O. Nanodiamond; Royal Society of Chemistry: Cambridge, UK, 2014; ISBN 978-1-84973-761-6. [Google Scholar]
- Karvounis, A.; Nalla, V.; MacDonald, K.F.; Zheludev, N.I. Ultrafast Coherent Absorption in Diamond Metamaterials. Adv. Mater. 2018, 30, 1707354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondič, L.; Varga, M.; Hruška, K.; Fait, J.; Kapusta, P. Enhanced extraction of silicon-vacancy centers light emission using bottom-up engineered polycrystalline diamond photonic crystal slabs. ACS Nano 2017, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babchenko, O.; Kromka, A.; Hruska, K.; Kalbacova, M.; Broz, A.; Vanecek, M. Fabrication of nano-structured diamond films for SAOS-2 cell cultivation. Phys. Status Solidi 2009, 206, 2033–2037. [Google Scholar] [CrossRef]
- Madou, M.J. Fundamentals of Microfabrication and Nanotechnology; CRC Press: Boca Raton, FL, USA, 2012; Volume II, ISBN 978-1-4398-9530-6. [Google Scholar]
- Sun, P.; Tang, C.; Xia, X.; Yao, Z.; Quan, B.; Yuan, G.; Gu, C.; Li, J. Controlled fabrication of periodically high-aspect ratio CVD-diamond nanopillar arrays by pure oxygen etching process. Microelectron. Eng. 2016, 155, 61–66. [Google Scholar] [CrossRef]
- Kim, J.U.; Lee, S.; Kim, T. Recent advances in unconventional lithography for challenging 3D hierarchical structures and their applications. J. Nanomater. 2016, 2016, 7602395. [Google Scholar] [CrossRef]
- Akinoglu, E.M.; Morfa, A.; Giersig, M. Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication. Turk. J. Phys. 2014, 38, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Cvetanovic, S.; Pearce, J.M. Fabricating ordered 2-D nano-structured arrays using nanosphere lithography. MethodsX 2017, 4, 229–242. [Google Scholar] [CrossRef]
- Colson, P.; Henrist, C.; Cloots, R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013, 2013, 948510. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, M.; Lai, Y.; Chi, L. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61. [Google Scholar] [CrossRef]
- Lotito, V.; Zambelli, T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv. Colloid Interface Sci. 2017, 246, 217–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.G.; Wu, X.Z.; Di, D.; Dong, P.T.; Xiao, R.; Wang, S.Q. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering. Nanoscale 2016, 8, 4672–4680. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, J.C.; Treichel, D.A.; Smith, M.T.; Duval, M.L.; Jensen, T.R.; Van Duyne, R.P. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 1999, 103, 3854–3863. [Google Scholar] [CrossRef]
- Deckman, H.W.; Dunsmuir, J.H. Applications of surface textures produced with natural lithography. J. Vac. Sci. Technol. B 1983, 1, 1109–1112. [Google Scholar] [CrossRef]
- Wang, M.; Meng, F.; Wu, H.; Wang, J. Photonic crystals with an eye pattern similar to peacock tail feathers. Crystals 2016, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ai, B.; Möhwald, H.; Zhang, G. Colloidal lithography meets plasmonic nanochemistry. Adv. Opt. Mater. 2018, 6, 1800402. [Google Scholar] [CrossRef]
- Kothary, P.; Dou, X.; Fang, Y.; Gu, Z.; Leo, S.-Y.; Jiang, P. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach. J. Colloid Interface Sci. 2017, 487, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, G. Colloidal lithography. In Updates in Advanced Lithography; Hosaka, S., Ed.; InTechOpen: London, UK, 2013; ISBN 978-953-51-1175-7. [Google Scholar]
- Laurvick, T.V.; Coutu, R.A.; Sattler, J.M.; Lake, R.A. Surface feature engineering through nanosphere lithography. J. Micro/Nanolith. MEMS MOEMS 2016, 15, 031602. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Ravaine, S. Bottom-Up Assembly and Applications of Photonic Materials. Crystals 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wen, J.; Li, L.; Wang, Y.; Wang, D.; Chen, L.; Zhang, Y.; Du, Y. Architecture design and applications of nanopatterned arrays based on colloidal lithography. J. Appl. Phys. 2019, 126, 141101. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, D.; Chen, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C.-P. A facile, low-cost plasma etching method for achieving size controlled non-close-packed monolayer arrays of polystyrene nano-spheres. Nanomaterials 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Domonkos, M.; Ižák, T.; Štolcová, L.; Proška, J.; Kromka, A. Controlled structuring of self-assembled polystyrene microsphere arrays by two different plasma systems. In Proceedings of the 5th International Conference NANOCON 2013, Ostrava, Czechia, 16–18 October 2013. [Google Scholar]
- Kosiorek, A.; Kandulski, W.; Glaczynska, H.; Giersig, M. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small 2005, 1, 439–444. [Google Scholar] [CrossRef]
- Kromka, A.; Babchenko, O.; Potocky, S.; Rezek, B.; Sveshnikov, A.; Demo, P.; Izak, T.; Varga, M. Diamond nucleation and seeding techniques for tissue regeneration. In Diamond-Based Materials for Biomedical Applications; Woodhead Publishing Series in Biomaterials; Narayan, R., Ed.; Woodhead Publishing: Cambridge, UK, 2013; Chapter 9; pp. 206–255. ISBN 978-0-85709-340-0. [Google Scholar]
- Domonkos, M.; Izak, T.; Babchenko, O.; Varga, M.; Hruska, K.; Kromka, A. Mask-free surface structuring of micro-and nanocrystalline diamond films by reactive ion plasma etching. ASEM 2014, 6, 780–784. [Google Scholar] [CrossRef]
- Domonkos, M.; Varga, M.; Ondič, L.; Gajdošová, L.; Kromka, A. Microsphere lithography for scalable polycrystalline diamond-based near-infrared photonic crystals fabrication. Mater. Des. 2018, 139, 363–371. [Google Scholar] [CrossRef]
- Domonkos, M.; Ižák, T.; Štolcová, L.; Proška, J.; Demo, P.; Kromka, A. Structuring of diamond films using microsphere lithography. Acta Polytech. 2014, 54, 320–324. [Google Scholar] [CrossRef]
- Lai, C.-F.; Wang, Y.-C. Colloidal photonic crystals containing silver nanoparticles with tunable structural colors. Crystals 2016, 6, 61. [Google Scholar] [CrossRef]
- Fang, Y.; Phillips, B.M.; Askar, K.; Choi, B.; Jiang, P.; Jiang, B. Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures. J. Mater. Chem. C 2013, 1, 6031. [Google Scholar] [CrossRef]
- Chen, J.; Dong, P.; Di, D.; Wang, C.; Wang, H.; Wang, J.; Wu, X. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating. Appl. Surf. Sci. 2013, 270, 6–15. [Google Scholar] [CrossRef]
- Ye, X.; Huang, J.; Zeng, Y.; Sun, L.-X.; Geng, F.; Liu, H.-J.; Wang, F.-R.; Jiang, X.-D.; Wu, W.-D.; Zheng, W.-G. Monolayer colloidal crystals by modified air-water interface self-assembly approach. Nanomaterials 2017, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.T.; Wang, H.-N.; Fales, A.M.; Vo-Dinh, T. Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal. Chem. 2013, 85, 6378–6383. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.-G.; Yu, H.K.; Jang, S.G.; Yang, S.-M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Frank, B.; Neubrech, F.; Zhang, C.; Braun, P.V.; Giessen, H. Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials. Beilstein J. Nanotechnol. 2014, 5, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Ingram, W.; He, Y.; Stone, K.; Dennis, W.M.; Ye, D.; Zhao, Y. Tuning the plasmonic properties of silver nanopatterns fabricated by shadow nanosphere lithography. Nanotechnology 2016, 27, 385301. [Google Scholar] [CrossRef] [PubMed]
- Domonkos, M.; Izak, T.; Stolcova, L.; Proska, J.; Kromka, A. Fabrication of periodically ordered diamond nanostructures by microsphere lithography. Phys. Status Solidi B 2014, 251, 2587–2592. [Google Scholar] [CrossRef]
- Acikgoz, C.; Hempenius, M.A.; Huskens, J.; Vancso, G.J. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 2011, 47, 2033–2052. [Google Scholar] [CrossRef] [Green Version]
- Flavel, B.S.; Shapter, J.G.; Quinton, J.S. Nanosphere lithography using thermal evaporation of gold. In Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology, Brisbane, Australia, 3–7 July 2006. [Google Scholar]
- Gadelrab, K.R.; Ding, Y.; Pablo-Pedro, R.; Chen, H.; Gotrik, K.W.; Tempel, D.G.; Ross, C.A.; Alexander-Katz, A. Limits of directed self-assembly in block copolymers. Nano Lett. 2018, 18, 3766–3772. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-C.; Franke, E.; Mignot, Y.; Xie, R.; Yeung, C.W.; Zhang, J.; Chi, C.; Zhang, C.; Farrell, R.; Lai, K.; et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 2018, 1, 562–569. [Google Scholar] [CrossRef]
- Herr, D.J.C. Directed block copolymer self-assembly for nanoelectronics fabrication. J. Mater. Res. 2011, 26, 122–139. [Google Scholar] [CrossRef]
- Aassime, A.; Hamouda, F. Conventional and un-conventional lithography for fabricating thin film functional devices. In Modern Technologies for Creating the Thin-film Systems and Coatings; InTechOpen: London, UK, 2017. [Google Scholar]
- Zhang, J.; Wang, S.; Jiang, L.; Wang, M.; Chu, Z.; Zhu, W.; Li, X. Morphology control of nanostructure using microsphere-assisted femtosecond laser double-pulse ablation and chemical etching. Appl. Surf. Sci. 2020, 502, 144272. [Google Scholar] [CrossRef]
- Huang, J.; He, Z.; Liu, Y.; Liu, L.; He, X.; Wang, T.; Yi, Y.; Xie, C.; Du, K. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere. Appl. Surf. Sci. 2019, 478, 793–801. [Google Scholar] [CrossRef]
- Qi, X.; Bi, J. Plasmonic sensors relying on nanoparticle arrays created by a template-directed dewetting process. Opt. Commun. 2019, 453, 124328. [Google Scholar] [CrossRef]
- Xia, L.; Yang, Z.; Yin, S.; Guo, W.; Li, S.; Xie, W.; Huang, D.; Deng, Q.; Shi, H.; Cui, H.; et al. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array. Opt. Express 2013, 21, 11349. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yu, Z.; Li, L.; Xu, T. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Sci. Rep. 2019, 9, 7379. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures. Sci. Rep. 2013, 3, 3396. [Google Scholar] [CrossRef] [Green Version]
- Trompoukis, C.; Massiot, I.; Depauw, V.; El Daif, O.; Lee, K.; Dmitriev, A.; Gordon, I.; Mertens, R.; Poortmans, J. Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells. Opt. Express 2016, 24, A191. [Google Scholar] [CrossRef]
- Salomoni, M.; Pots, R.; Auffray, E.; Lecoq, P. Enhancing light extraction of inorganic scintillators using photonic crystals. Crystals 2018, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Lan, C.; Bian, H.; Gao, R.; Zhou, J. Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing. Opt. Express 2017, 25, 22038. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, L.; Fang, F.; Fu, Y.; Yin, Z. A review on colloidal self-assembly and their applications. Curr. Nanosci. 2016, 12, 725–746. [Google Scholar] [CrossRef]
Criteria | NSL | EBL and FIB |
---|---|---|
Substrate roughness | low | arbitrary |
Mask preparation | simple (self-assembled mask, batch operation, flat diamond surface favourable) | complex (direct write technique, surface charging must be compensated on intrinsic diamond) |
Patterned area | large (≈cm2) | small (< 1 mm2) |
Pattering geometry | limited (in size and shape of mask) | arbitrary (almost any shape, size and design) |
Time consumption | short (less than hours for 1 × 1 cm2 ) | long (around a number of days for 1 × 1 cm2) |
Resolution | good | very high |
Precision and uniformity | satisfactory with defects | extremely high |
Defectivity | unavoidable defects (defect-free domains around 10–100 µm2) | extremely low |
Cost | cost-effective | high |
Throughput | high | low |
Repeatability and controllability | good (based on self-assembly) | high (computer-controlled) |
Environment | vacuum required | clean-room, high vacuum required |
Complexity of equipment | simple | complicated |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domonkos, M.; Demo, P.; Kromka, A. Nanosphere Lithography for Structuring Polycrystalline Diamond Films. Crystals 2020, 10, 118. https://doi.org/10.3390/cryst10020118
Domonkos M, Demo P, Kromka A. Nanosphere Lithography for Structuring Polycrystalline Diamond Films. Crystals. 2020; 10(2):118. https://doi.org/10.3390/cryst10020118
Chicago/Turabian StyleDomonkos, Mária, Pavel Demo, and Alexander Kromka. 2020. "Nanosphere Lithography for Structuring Polycrystalline Diamond Films" Crystals 10, no. 2: 118. https://doi.org/10.3390/cryst10020118
APA StyleDomonkos, M., Demo, P., & Kromka, A. (2020). Nanosphere Lithography for Structuring Polycrystalline Diamond Films. Crystals, 10(2), 118. https://doi.org/10.3390/cryst10020118