Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast
Abstract
:1. Introduction
2. Dual Energy Method
3. Detectors Used in Dual Energy Breast Imaging
4. Simulation Studies
5. Experimental Studies
5.1. Noise Reduction Techniques
5.2. Boxcar Filter
5.3. Kalender’s Noise Reduction Technique (KNR)
5.4. High Energy Median Filter
6. Clinical Practice
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Cancer Report 2014; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- American Cancer Society. Breast Cancer Facts and Figures 2011–2012; American Cancer Society: Atlanta, GA, USA, 2011. [Google Scholar]
- Seyyedi, S.; Cengiz, K.; Kamasak, M.; Yildirim, I. An object oriented simulator for 3D digital breast tomosynthesis imaging system. Comput. Math. Methods Med. 2013, 2013, 250689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mert, A.; Kılıc, N.; Bilgili, E.; Akan, A. Breast cancer detection with reduced feature set. Comput. Math. Methods Med. 2015, 2015, 265138. Available online: https://www.hindawi.com/journals/cmmm/2015/265138/ (accessed on 12 March 2020). [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2008; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Roberts, M.; Kahn, E.; Haddawy, P. Development of a Bayesian Network for Diagnosis of Breast Cancer; IJCAI-95 Workshop on Building Probabilistic Networks: Montréal, QC, Canada, 1995. [Google Scholar]
- Kappadath, S.C.; Shaw, C.C. Quantitative evaluation of dual-energy digital mammography for calcification imaging. Phys. Med. Biol. 2004, 49, 2563–2576. [Google Scholar] [CrossRef] [PubMed]
- Kappadath, S.C.; Shaw, C.C. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections. Med. Phys. 2005, 32, 3395–3408. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.F.; Morgan, P. Microcalcifications in breast cancer: Lessons from physiological mineralization. Bone 2013, 53, 437–450. [Google Scholar] [CrossRef]
- Cheng, H.D.; Cai, X.; Chen, X.; Hu, L.; Lou, X. Computer aided detection and classification of microcalcifications in mammograms: A survey. Pattern Recognit. 2003, 36, 2967–2991. [Google Scholar] [CrossRef]
- Majid, A.S.; de Paredes, E.S.; Doherty, R.D.; Sharma, N.R.; Salvador, X. Missed breast carcinoma: Pitfalls and pearls. Radiographics 2003, 23, 881–895. [Google Scholar] [CrossRef]
- Youk, J.H.; Kim, E.K.; Kim, M.J.; Kwak, J.Y.; Son, E.J. Performance of hand-held whole-breast ultrasound based on BI-RADS in women with mammographically negative dense breast. Eur. Radiol. 2011, 21, 667–675. [Google Scholar] [CrossRef]
- Loukas, C.; Kostopoulos, S.; Tanoglidi, A.; Glotsos, D.; Sfikas, C.; Cavouras, D. Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Comput. Math. Methods Med. 2013, 2013, 829461. [Google Scholar] [CrossRef]
- Stone, N.; Matousek, P. Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis. Cancer Res. 2008, 68, 4424–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taibi, A.; Vecchio, S. Breast Imaging. In Comprehensive Biomedical Physics; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 121–154. [Google Scholar]
- Sorenson, J.A.; Duke, P.R.; Smith, S.W. Simulation studies of dual energy X-ray absorptiometry. Med. Phys. 1989, 16, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.M.; Fogelman, I. Technical Principles of dual energy X-ray absorptiometry. Semin. Nucl. Med. 1997, 27, 210–228. [Google Scholar] [CrossRef]
- Beaman, S.A.; Lillicrap, S.C. Optimum X-ray spectra for mammography. Phys. Med. Biol. 1982, 27, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Lemacks, M.R.; Kappadath, S.C.; Shaw, C.C.; Liu, X.; Whitman, G.J. A dual-energy subtraction technique for microcalcification imaging in digital mammography—A signal-to-noise analysis. Med. Phys. 2002, 29, 1739–1751. [Google Scholar] [CrossRef]
- Brandan, M.E.; Ramirez, V.R. Evaluation of dual-energy subtraction of digital mammography images under conditions found in a commercial unit. Phys. Med. Biol. 2006, 51, 2307–2320. [Google Scholar] [CrossRef]
- Baldelli, P.; Bravin, A.; Di Maggio, C.; Gennaro, G.; Gambaccini, M.; Sarnelli, A.; Taibi, A. Evaluation of the minimum iodine concentration for contrast enhanced subtraction mammography. Nucl. Instrum. Methods Phys. Res. A 2007, 580, 1115–1118. [Google Scholar] [CrossRef]
- Dromain, C.; Thibault, F.; Diekmann, F.; Fallenberg, E.; Jong, R.; Koomen, M.; Hendrick, R.E.; Tarvidon, A.; Toledano, A. Dual-energy contrast-enhanced digital mammography: Initial clinical results of a multireader, multicase study. Breast Cancer Res. 2012, 14, R94. [Google Scholar] [CrossRef] [Green Version]
- Kappadath, S.C.; Shaw, C.C. Dual-energy digital mammography: Calibration and inverse-mapping technique to estimate calcification thickness and glandular-tissue ratio. Med. Phys. 2003, 30, 1110–1117. [Google Scholar] [CrossRef]
- Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Fountzoula, C.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G. Dual Energy Method for Breast Imaging: A Simulation Study. Comput. Math. Methods Med. 2015, 2015, 574238. [Google Scholar] [CrossRef] [Green Version]
- Koukou, V.; Martini, N.; Fountos, G.; Michail, C.; Sotiropoulou, P.; Bakas, A.; Kalyvas, N.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Dual energy subtraction method for breast calcification imaging. Nucl. Instrum. Methods Phys. Res. A 2017, 848, 31–38. [Google Scholar] [CrossRef]
- Koukou, V.; Martini, N.; Fountos, G.; Michail, C.; Bakas, A.; Oikonomou, G.; Kandarakis, I.; Nikiforidis, G. Application of a dual energy X-ray imaging method on breast specimen. Results Phys. 2017, 7, 1634–1636. [Google Scholar] [CrossRef]
- Martini, N.; Koukou, V.; Fountos, G.; Michail, C.; Bakas, A.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Characterization of breast calcification types using dual energy X-ray method. Phys. Med. Biol. 2017, 62, 7741–7764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurements. Med. Phys. 2007, 34, 4236–4246. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.A. A new method of spectroscopy for faint X-radiations. J. Opt. Soc. Am. 1928, 16, 433–438. [Google Scholar] [CrossRef]
- Johns, P.C.; Yaffe, M.J. Theoretical optimization of dual-energy X-ray imaging with application to mammography. Med. Phys. 1985, 12, 289–296. [Google Scholar] [CrossRef]
- Boone, J.M.; Shaber, G.S.; Tecotzky, M. Dual-energy mammography: A detector analysis. Med. Phys. 1990, 17, 665–675. [Google Scholar] [CrossRef]
- Brettle, D.S.; Cowen, A.R. Dual-energy digital mammography utilizing stimulated phosphor computed radiography. Phys. Med. Biol. 1994, 39, 1984–2004. [Google Scholar] [CrossRef]
- Taibi, A.; Fabbri, S.; Baldelli, P.; di Maggio, C.; Gennaro, G.; Marziani, M.; Tuffanelli, A.; Gambaccini, M. Dual-energy imaging in full-field digital mammography: A phantom study. Phys. Med. Biol. 2003, 48, 1945–1956. [Google Scholar] [CrossRef]
- Kappadath, S.C.; Shaw, C.C. Dual-energy mammography for calcification imaging: Noise reduction techniques. Phys. Med. Biol. 2008, 53, 5421–5443. [Google Scholar] [CrossRef] [Green Version]
- Dromain, C.; Balleyguier, C.; Adler, G.; Garbay, J.R.; Delaloge, S. Contrast-enhanced digital mammography. Eur. J. Radiol. 2009, 69, 34–42. [Google Scholar] [CrossRef]
- Dromain, C.; Thibault, F.; Muller, S.; Rimareix, F.; Delaloge, S.; Tardivon, A.; Balleyguier, C. Dual-energy contrast-enhanced digital mammography: Initial clinical results. Eur. Radiol. 2011, 21, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Michail, C.; Karpetas, G.; Kalyvas, N.; Valais, I.; Kandarakis, I.; Agavanakis, K.; Panayiotakis, G.; Fountos, G. Information Capacity of Positron Emission Tomography Scanners. Crystals 2018, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Michail, C.; Kalyvas, N.; Bakas, A.; Ninos, K.; Sianoudis, I.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.; Valais, I. Absolute Luminescence Efficiency of Europium-Doped Calcium Fluoride (CaF2:Eu) Single Crystals under X-ray Excitation. Crystals 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Saatsakis, G.; Kalyvas, N.; Michail, C.; Ninos, K.; Bakas, A.; Fountzoula, C.; Sianoudis, I.; Karpetas, G.E.; Fountos, G.; Kandarakis, I.; et al. Optical Characteristics of ZnCulnS/ZnS (Core/Shell) Nanocrystal Flexible Films Under X-ray Excitation. Crystals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Ducote, J.L.; Molloi, S. Quantification of breast density with dual energy mammography: A simulation study. Med. Phys. 2008, 35, 5411–5418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Lama, L.S.; Godeli, J.; Poletti, M.E. Monte Carlo simulation studies for the determination of microcalcification thickness and glandular ratio through dual-energy mammography. Radiat. Phys. Chem. 2017, 137, 157–162. [Google Scholar] [CrossRef]
- Del Lama, L.S.; Cunha, D.M.; Poletti, M.E. Validation of modified PENELOPE Monte Carlo code for applications in digital and dual-energy mammography. Radiat. Phys. Chem. 2017, 137, 151–156. [Google Scholar] [CrossRef]
- Frappart, L.; Boudeulle, M.; Boumendil, J.; Lin, H.C.; Martinon, I.; Palayer, C.; Mallet-Guy, Y.; Raudrant, D.; Bremond, A.; Rochet, Y.; et al. Structure and composition of microcalcifications in benign and malignant lesions of the breast: Study by light microscopy, microprobe analysis, and X-ray diffraction. Hum. Pathol. 1984, 15, 880–889. [Google Scholar] [CrossRef]
- Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res. 2002, 62, 5375–5380. [Google Scholar]
- Chan, H.; Doi, K. Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies. Med. Phys. 1985, 12, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Boone, J. Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment. Med. Phys. 1999, 213, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.; Cooper, V., III. Scatter/primary in mammography: Monte Carlo validation. Med. Phys. 2000, 27, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.; Tomal, A.; Poletti, M. Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects. Phys. Med. Biol. 2010, 55, 4335–4359. [Google Scholar] [CrossRef] [PubMed]
- Dance, D.; Day, G. The computation of scatter in mammography by Monte Carlo methods. Phys. Med. Biol. 1984, 29, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Barnea, G.; Dick, C. Monte Carlo studies of X-ray scattering in transmission diagnostic radiology. Med. Phys. 1986, 13, 490–495. [Google Scholar] [CrossRef]
- Boone, J.M.; Seibert, J.A. Monte Carlo simulation of the scattered radiation distribution in diagnostic radiology. Med. Phys. 1988, 15, 713–720. [Google Scholar] [CrossRef]
- Wu, X.; Barnes, G.; Tucker, D. Spectral dependence of glandular tissue dose in screen-film mammography. Radiology 1991, 179, 143–148. [Google Scholar] [CrossRef]
- Sechopoulos, I.; Suryanarayanan, S.; Vedantham, S.; D’Orsi, C.; Karellas, A. Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med. Phys. 2007, 34, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.E.; Macovski, A. Energy-selective reconstruction in X-ray computerized tomography. Phys. Med. Biol. 1976, 21, 733–744. [Google Scholar] [CrossRef]
- Marziani, M.; Taibi, A.; Tuffanelli, A.; Gambaccini, M. Dual-energy tissue cancellation in mammography with quasi-monochromatic X-rays. Phys. Med. Biol. 2002, 47, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Gambaccini, M.; Tuffanelli, A.; Taibi, A.; Fantini, A.; Del Guerra, A. A Bragg diffraction based quasimonochromatic source for mammography using mosaic crystals. Proc. SPIE 1999, 3770, 174–184. [Google Scholar]
- Gambaccini, M.; Taibi, A.; Del Guerra, A.; Marziani, M.; Tuffanelli, A. MTF evaluation of a phosphor-coated CCD for X-ray imaging. Phys. Med. Biol. 1996, 41, 2799–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taibi, A.; Del Guerra, A.; Gambaccini, M.; Marziani, M.; Tuffanelli, A. Evaluation of a digital X-ray detector based on a phosphor-coated CCD for mammography. Nucl. Instrum. Methods Phys. Res. A 1997, 392, 210–213. [Google Scholar] [CrossRef]
- Baldelli, P.; Bravin, A.; Di Maggio, C.; Gennaro, G.; Sarnelli, A.; Taibi, A.; Gambaccini, M. Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography. Phys. Med. Biol. 2006, 51, 4233–4251. [Google Scholar] [CrossRef]
- Kalyvas, N.; Valais, I.; Michail, C.; Fountos, G.; Kandarakis, I.; Cavouras, D. A theoretical study of CsI:Tl columnar scintillator image quality parameters by analytical modeling. Nucear Instrum. Methods Phys. Res. Sect. A 2015, 779, 18–24. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Seferis, I.; Kalyvas, N.; Fountos, G.; Kandarakis, I. Experimental Measurement of a High Resolution CMOS Detector Coupled to CsI Scintillators under X-ray Radiation. Radiat. Meas. 2015, 74, 39–46. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Martini, N.; Koukou, V.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G. Determination of the Detective Quantum Efficiency (DQE) of CMOS/CsI Imaging Detectors following the novel IEC 62220-1-1:2015 International Standard. Radiat. Meas. 2016, 94, 8–17. [Google Scholar] [CrossRef]
- Kalender, W.A.; Klotz, E.; Kostaridou, L. An algorithm for noise suppression in dual energy CT material density images. IEEE Trans. Med. Imag. 1988, 7, 218–224. [Google Scholar] [CrossRef]
- Ducote, J.L.; Molloi, S. Quantification of breast density with dual energy mammography: An experimental study. Med. Phys. 2010, 37, 793–801. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Fountos, G.; Bakas, A.; Fountzoula, C.; Kalyvas, N.; Karabotsos, A.; Sianoudis, I.; Kandarakis, I. Luminescence Efficiency of Calcium Tungstate (CaWO4) under X-ray radiation: Comparison with Gd2O2S:Tb. Measurement 2018, 120, 213–220. [Google Scholar] [CrossRef]
- Michail, C.M.; Spyropoulou, V.A.; Fountos, G.P.; Kalyvas, N.E.; Valais, I.G.; Kandarakis, I.S.; Panayiotakis, G.S. Experimental and theoretical evaluation of a high resolution CMOS based detector under X-ray imaging conditions. IEEE Trans. Nucl. Sci. 2011, 58, 314–322. [Google Scholar] [CrossRef]
- ACR. Mammography, Quality Control Manual; American College of Radiology: Reston, VA, USA, 1999. [Google Scholar]
- Chen, X.; Mou, X.; Zhang, L. Indicator and calibration material for microcalcification in dualenergy mammography. In Proceedings of the 1st International Conference on Medical Biometrics, Hong Kong, China, 4–5 January 2008; pp. 265–272. [Google Scholar]
- Baker, R.; Matousek, P.; Ronayne, K.L.; Parker, A.W.; Rogers, K.; Stone, N. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 2007, 132, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Rogers, K.D.; Shepherd, N.; Stone, N. New relationships between breast microcalcifications and cancer. Br. J. Cancer 2010, 103, 1034–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerssens, M.M.; Matousek, P.; Rogers, K.; Stone, N. Towards a safe non-invasive method for evaluation the carbonate substitution levels of hydroxyapatite (HAp) in micro-calcifications found in breast tissue. Analyst 2010, 135, 3156–3161. [Google Scholar] [CrossRef] [PubMed]
- Matousek, P.; Stone, N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 2007, 12, 024008. [Google Scholar] [CrossRef]
- Matousek, P.; Stone, N. Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J. Biophotonics 2013, 6, 7–19. [Google Scholar] [CrossRef]
- Wang, Z.; Hauser, N.; Singer, G.; Trippel, M.; Kubik-Huch, R.A.; Chneider, C.W.; Stampanoni, M. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nat. Commun. 2014, 5, 3797. [Google Scholar] [CrossRef]
- Izatulina, A.R.; Nikolaev, A.M.; Kuz’mina, M.A.; Frank-Kamenetskaya, O.V.; Malyshev, V.V. Bacterial Effect on the Crystallization of Mineral Phases in a Solution Simulating Human Urine. Crystals 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Busing, C.M.; Keppler, U.; Menges, V. Differences in microcalcification in breast tumors. Virchows Arch. A 1981, 393, 307–313. [Google Scholar] [CrossRef]
- Frappart, L.; Remy, I.; Lin, H.C.; Bremond, A.; Raudrant, D.; Grousson, B.; Vauzelle, J.L. Different types of microcalcifications observed in breast pathology. Virchows Arch. A 1987, 410, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Ishikawa, K. Effect of Calcium and Phosphate on Compositional Conversion from Dicalcium Hydrogen Phosphate Dihydrate Blocks to Octacalcium Phosphate Blocks. Crystals 2018, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Pajor, K.; Pajchel, L.; Kolodziejska, B.; Kolmas, J. Selenium-Doped Hydroxyapatite Nanocrystals-Synthesis, Physiochemical Properties and Biological Significance. Crystals 2018, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Song, F.; Wang, R.; Sun, S.; Li, M.; Fan, Z.; Liu, B.; Zhang, Q.; Wang, J. Mechanically Robust 3D Graphene-Hydroxyapatite Hybrid Bioscaffolds with Enhanced Osteoconductive and Biocmpatible Performance. Crystals 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yuan, L.; An, J. Crystallographic Characteristics of Hydroxyapatite in Hard Tissues of Cololabis saira. Crystals 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Di Tommaso, D.; Prakash, M.; Lemaire, T.; Lewerenz, M.; De Leeuw, N.H.; Naili, S. Molecular Dynamics Simulations of Hydroxyapatite Nanopores in Contact with Electrolyte Solutions: The Effect of Nanoconfinement and Solvated Ions on the Surface Reactivity and the Structural, Dynamical, and Vibrational Properties of Water. Crystals 2017, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Vasquez-Quitral, P.; Arana, J.T.; Miras, M.C.; Acevedo, D.F.; Barbero, C.A.; Neira-Carrillo, A. Effect of Diazotated Sulphonated Polystyrene Films on the Calcium Oxalate Crystallization. Crystals 2017, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chiang, C.Y.; Zhou, W. Formation Mechanism of CaCO3 Spherulites in the Myostracum Layer of Limpet Shells. Crystals 2017, 7, 319. [Google Scholar] [CrossRef]
- Han, Y.; Sun, B.; Yan, H.; Tucker, M.E.; Zhao, Y.; Zhou, J.; Zhao, Y.; Zhao, H. Biomineralization of Carbonate Minerals Induced by The Moderate Halophile Staphylococcus Warneri YXY2. Crystals 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Fandos-Morera, A.; Prats-Esteve, M.; Tura-Soteras, J.; Traveria-Cros, A. Breast tumors: Composition of microcalcifications. Radiology 1988, 169, 325–327. [Google Scholar] [CrossRef]
- Code of Federal Regulations, Title 21, Chapter I, Subchapter I, Part 900, Subpart BQuality Standards and Certification, §900.12; Revised 1 April 2015; OFR: College Park, MD, USA, 2015.
- Perry, N.; Broeders, M.; de Wolf, C.; Tornberg, S.; Holland, R.; von Karsa, L. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th ed.; European Communities: Brussels, Belgium, 2006. [Google Scholar]
- Cardinal, H.N.; Fenster, A. Theoretical optimization of a split septaless xenon ionization detector for dual-energy chest radiography. Med. Phys. 1988, 15, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Johns, P.C.; Drost, D.J.; Yaffe, M.J.; Fenster, A. Dual-energy mammography: Initial experimental results. Med. Phys. 1985, 12, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lewin, J.M.; Isaacs, P.K.; Vance, V.; Larke, F.J. Dual-Energy Contrast-enhanced Digital Subtraction Mammography: Feasibility. Radiology 2003, 229, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Jochelson, M.S.; Dershaw, D.D.; Sung, J.S.; Heerdt, A.S.; Thornton, C.; Moskowitz, C.S.; Ferrara, J.; Morris, E.A. Bilateral Contrast-enhanced Dual-Energy Digital Mammography: Feasibility and Comparison with Conventional Digital Mammography and MR Imaging in Women with Known Breast Carcinoma. Radiology 2013, 266, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Cheung, Y.C.; Lin, Y.C.; Wan, Y.L.; Yeow, K.M.; Huang, P.C.; Lo, Y.F.; Tsai, H.P.; Ueng, S.H.; Chang, C.J. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: Interobserver blind-reading analysis. Eur. Radiol. 2014, 24, 2394–2403. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Tsai, H.P.; Lo, Y.F.; Ueng, S.H.; Huang, P.C.; Chen, S.C. Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: A preliminary analysis. Eur. Radiol. 2016, 26, 1082–1089. [Google Scholar] [CrossRef]
- Knogler, T.; Homolka, P.; Hörnig, M.; Leithner, R.; Langs, G.; Waitzbauer, M.; Pinker-Domenig, K.; Leitner, S.; Helbich, T.H. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: A feasibility study. Eur. Radiol. 2016, 26, 1575–1581. [Google Scholar] [CrossRef]
- Knogler, T.; Homolka, P.; Hoernig, M.; Leithner, R.; Langs, G.; Waitzbauer, M.; Pinker, K.; Leitner, S.; Helbich, T.H. Application of BI-RADS Descriptors in Contrast-Enhanced Dual-Energy Mammography: Comparison with MRI. Breast Care 2017, 12, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.S.; Lebron, L.; Keating, D.; D’Alessio, D.; Comstock, C.E.; Lee, C.H.; Pike, M.C.; Ayhan, M.; Moskowitz, C.S.; Morris, E.A.; et al. Performance of Dual-Energy Contrast-enhanced Digital Mammography for screening Women at Increased Risk of Breast Cancer. Radiology 2019, 293, 81–88. [Google Scholar] [CrossRef]
- Del Medical Systems Group (Roselle, IL) 2005. Available online: http://www.delmedical.com (accessed on 12 March 2020).
- GE Healthcare. Available online: http://africa.gehealthcare.com/en/products/categories/mammography/mammography_systems/senographe_ds#tabs/tab16F1B92E81C840338FFD547C6292BB18 (accessed on 12 March 2020).
- GE Healthcare. Available online: https://www.gehealthcare.in/products/goldseal---refurbished-systems/goldseal-mammography/goldseal-certified-senographe-essential (accessed on 12 March 2020).
- Siemens Healthinees. Available online: https://www.siemens-healthineers.com/mammography/digital-mammography/mammomat-inspiration-prime (accessed on 12 March 2020).
- Radi, M.J. Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch. Pathol. Lab. Med. 1989, 113, 1367–1369. [Google Scholar]
- Morgan, M.P.; Cooke, M.M.; Christopherson, P.A.; Westfall, P.R.; McCarthy, G.M. Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol. Carcinog. 2001, 32, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.P.; Cooke, M.M.; McCarthy, G.M. Microcalcifications associated with breast cancer: An epiphenomenon or biologically significant feature of selected tumors? J. Mammary Gland Biol. Neoplasia 2005, 10, 181–187. [Google Scholar] [CrossRef] [PubMed]
Optimized Parameters– Results | Studies | |||||
---|---|---|---|---|---|---|
Lemacks et al. [20] | Brandan et al. [21] | Ducote & Molloi [41] | Koukou et al. [25] | Del Lama et al. [42] | Del Lama et al [43] | |
Beam (keV)/Spectra (kVp) | 25/50 kVp | 25/40 kVp | 19/71 keV 32/96 kVp | 23/58 keV 40/70 kVp | 20/70 keV | 20/70 keV |
Anode/Filter Combination | Mo/Mo 1 (LE) W/La 2 (HE) | Mo/Mo (LE) Rh/Rh 3 (HE) | W/Rh 4 (LE) W/Cu 5 (HE) | W/Cd 6 (LE) W/Cu (HE) | - | - |
Breast Thickness (cm) | 5 | 5 | 4.2 | 4 | 2 | 4 |
Glandular/AdiPose Tissue | 50%/50% | 50%/50% | - | 50%/50% | 25%/75% 50%/50% 75%/25% | 30%/70% |
Microcalcification Composition | CaCO3 | CaCO3 | - | Hap | CaCO3 | CaCO3 |
Visualized/Detected Microcalcification (μm) | 250 | 300 | - | 150 | 200 | 200 |
MGD (mGy) | 1000 mR total detector exposure | 2.20 | 0.000183 7 0.009850 8 | 3.52 | 2.50 | 2.50 |
Thickness of PMMA (cm) | Equivalent Breast Thickness (cm) | Maximum Average Glandular Dose to Equivalent Breasts | |
---|---|---|---|
Acceptable Level (mGy) | Achievable Level (mGy) | ||
2.0 | 2.1 | <1.0 | <0.6 |
3.0 | 3.2 | <1.5 | <1.0 |
4.0 | 4.5 | <2.0 | <1.6 |
4.5 | 5.3 | <2.5 | <2.0 |
5.0 | 6.0 | <3.0 | <2.4 |
6.0 | 7.5 | <4.5 | <3.6 |
7.0 | 9.0 | <6.5 | <5.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, N.; Koukou, V.; Michail, C.; Fountos, G. Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. Crystals 2020, 10, 198. https://doi.org/10.3390/cryst10030198
Martini N, Koukou V, Michail C, Fountos G. Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. Crystals. 2020; 10(3):198. https://doi.org/10.3390/cryst10030198
Chicago/Turabian StyleMartini, Niki, Vaia Koukou, Christos Michail, and George Fountos. 2020. "Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast" Crystals 10, no. 3: 198. https://doi.org/10.3390/cryst10030198
APA StyleMartini, N., Koukou, V., Michail, C., & Fountos, G. (2020). Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. Crystals, 10(3), 198. https://doi.org/10.3390/cryst10030198