TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Settings
2.2. Growth of Spherical BaTiO3 Nanoparticles
2.3. Preparation of BaTiO3/Polymer/Al (BPA) Films
2.4. Characterization of BaTiO3 Nanocrystals and BPA Films
3. Results and Discussion
3.1. Influence of Molar Ba/Ti Ratio
3.2. Influence of Hydrothermal Temperature
3.3. Influence of Hydrothermal Time
3.4. Understanding of Growth Mechanism
3.5. Dielectric Properties of the BPA Film with BaTiO3 Nanoparticles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.; Yan, F.; Yang, H.; Yin, Y.; Wang, T. Dielectric and ferroelectric properties of SrTiO3-Bi0.54Na0.46TiO3-BaTiO3 lead-free ceramics for high energy storage applications. J. Alloys Compd. 2018, 749, 605–611. [Google Scholar] [CrossRef]
- Si, F.; Tang, B.; Fang, Z.X.; Li, H.; Zhang, S.R. A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J. Alloys Compd. 2020, 819, 153004. [Google Scholar] [CrossRef]
- Liu, S.N.; Liu, C.C.; You, Y.; Wang, Y.J.; Wei, R.B. Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties. Nanomaterials 2019, 9, 9121667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.H.; Wu, J.; Wu, X.D.; Suo, H.; Shen, X.D.; Cui, S. Synthesis of bulk BaTiO3 aerogel and characterization of photocatalytic properties. J. Sol-Gel Sci. Technol. 2019, 90, 313–322. [Google Scholar] [CrossRef]
- Song, R.X.; Zhao, Y.; Li, W.L.; Yu, Y.; Sheng, J.; Li, Z.; Zhang, Y.L.; Xia, H.T.; Fei, W.D. High temperature stability and mechanical quality factor of donor-acceptor co-doped BaTiO3 piezoelectrics. Acta Mater. 2019, 181, 200–206. [Google Scholar] [CrossRef]
- Meeker, M.A.; Kundu, S.; Mauryn, D.; Kang, M.; Sosa, A.; Mudiyanselage, R.H.; Clavel, M.; Gollapudit, S.; Hudait, M.K.; Priya, S.; et al. The permittivity and refractive index measurements of doped barium titanate (BT-BCN). Opt. Mater. 2017, 73, 793–798. [Google Scholar] [CrossRef]
- Sikarwar, S.; Sonker, R.K.; Shukla, A.; Yadav, B.C. Synthesis and investigation of cubical shaped barium titanate and its application as opto-electronic humidity sensor. J. Mater. Sci.-Mater. Electron. 2018, 29, 12951–12958. [Google Scholar] [CrossRef]
- Hapani, D.S.; Singh, P.; Jha, P.K.; Singh, P. A comparative electrical conductivity behavior of BaTiO3 and CaTiO3 ceramics. AIP Conf. Proc. 2018, 2009, 020010. [Google Scholar]
- Kabanov, V.V.; Piyanzina, I.I.; Tayurskii, D.A.; Mamin, R.F. Towards high-temperature quasi-two-dimensional superconductivity. Phys. Rev. B 2018, 98, 094522. [Google Scholar] [CrossRef] [Green Version]
- Sasikumar, S.; Thirumalaisamy, T.K.; Saravanakumar, S.; Sivaganesh, D. Effect of neodymium doping in BaTiO3 ceramics on structural and ferroelectric properties. J. Mater. Sci.-Mater. Electron. 2019, 19, 02670. [Google Scholar] [CrossRef]
- Abdullah-Al, M.M.; Haque, A.; Pelton, A.; Paul, B.; Ghosh, K. Structural, electronic, and magnetic analysis and device characterization of ferroelectric-ferromagnetic heterostructure (BZT-BCT/LSMO/LAO) devices for multiferroic applications. IEEE Trans. Magn. 2018, 54, 2502908. [Google Scholar]
- Akram, F.; Kim, J.C.; Khan, S.A.; Zeb, A.; Yeo, H.G.; Sung, Y.S.; Song, T.K.; Lee, S. Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3-BaTiO3-based ceramics. J. Alloys Compd. 2020, 818, 152878. [Google Scholar] [CrossRef]
- Wang, H.X.; Liu, B.B.; Wang, X.H. Effects of dielectric thickness on energy storage properties of surface modified BaTiO3 multilayer ceramic capacitors. J. Alloys Compd. 2020, 817, 152804. [Google Scholar] [CrossRef]
- Park, H.; Na, Y.; Choi, H.J.; Suh, S.; Baek, D.H.; Yoon, J.R. Electrical properties of BaTiO3-based 0603/0.1 μF/0.3 mm ceramics decoupling capacitor for embedding in the PCB of 10G RF transceiver module. J. Electr. Eng. Technol. 2018, 13, 1637–1642. [Google Scholar]
- Ianculescu, A.; Pintilie, I.; Vasilescu, C.A.; Botea, M.; Iuga, A.; Melinescu, A.; Dragan, N.; Pintilie, L. Intrinsic pyroelectric properties of thick, coarse grained Ba1−xSrxTiO3 ceramics. Ceram. Int. 2016, 42, 10338–10348. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Jin, Z.; Chen, C.; Zhai, W. Temperature dependent magnetoelectric coupling in BaTiO3/La0.67Sr0.33MnO3 heterojunction. J. Phys. D Appl. Phys. 2018, 51, 135305. [Google Scholar] [CrossRef]
- Hong, K.; Lee, T.H.; Suh, J.M.; Park, J.S.; Kwon, H.S.; Choi, J.; Jang, H.W. Direct observation of surface potential distribution in insulation resistance degraded acceptor-doped BaTiO3 multilayered ceramic capacitors. Electron. Mater. Lett. 2018, 14, 629–635. [Google Scholar] [CrossRef]
- Kim, J. Electrical and thermal properties of a (Ba1−x−ySrxCay)TiO3-based PTC thermistor for preheating light oil. Funct. Mater. Lett. 2018, 11, 1850076. [Google Scholar] [CrossRef]
- Cernea, M.; Vasile, B.S.; Surdu, V.A.; Trusca, R.; Bartha, C.; Craciun, F.; Galassi, C. Electric and magnetic properties of ferromagnetic/piezoelectric bilayered composite. J. Mater. Sci. 2018, 53, 14160–14171. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Yuan, B.; Lin, E.; Bao, D. Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment. ACS Appl. Mater. Interfaces 2018, 10, 37963–37973. [Google Scholar] [CrossRef]
- Jin, M.H.; Shin, E.; Jin, S.; Jo, H.; Ok, K.M.; Hong, J.; Jun, B.H.; Durrant, J.R. Solvothermal synthesis of ferroelectric BaTiO3 nanoparticles and their application to dye-sensitized solar cells. J. Korean Phys. Soc. 2018, 73, 627–631. [Google Scholar] [CrossRef]
- Schadli, G.N.; Buchel, R.; Pratsinis, S.E. Nanogenerator power output: Influence of particle size and crystallinity of BaTiO3. Nanotechnology 2017, 28, 275705. [Google Scholar] [CrossRef] [PubMed]
- Aminirastabi, H.; Xue, H.; Mitic, V.V.; Lazovic, G.; Ji, G.L.; Peng, D.L. Novel fractal analysis of nanograin growth in BaTiO3 thin film. Mater. Chem. Phys. 2020, 239, 122261. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, H.H.; Wang, X.S.; Li, Y.X.; Yao, X. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics. J. Eur. Ceram. Soc. 2020, 40, 391–400. [Google Scholar] [CrossRef]
- Gu, L.L.; Li, T.; Xu, Y.J.; Sun, C.H.; Yang, Z.Y.; Zhu, D.L.; Chen, D.L. Effects of the Particle Size of BaTiO3 Fillers on Fabrication and Dielectric Properties of BaTiO3/Polymer/Al Films for Capacitor Energy-Storage Application. Materials 2019, 12, 439. [Google Scholar] [CrossRef] [Green Version]
- Thanki, A.A.; Goyal, R.K. Study on effect of cubic- and tetragonal phased BaTiO3 on the electrical and thermal properties of polymeric nanocomposites. Mater. Chem. Phys. 2016, 183, 447–456. [Google Scholar] [CrossRef]
- Chen, T.; Meng, J.; Wu, S.; Pei, J.; Lin, Q.; Wei, X.; Li, J.; Zhang, Z. Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution. J. Alloys Compd. 2018, 754, 184–189. [Google Scholar] [CrossRef]
- Shmyt’ko, I.M.; Frolov, D.D.; Aronin, S.; Ganeeva, G.R.; Kedrov, V.V. Formation of new structural states in compressed BaTiO3 nanopowders. Phys. Solid State 2017, 59, 1196–1205. [Google Scholar] [CrossRef]
- Rotaru, R.; Peptu, C.; Samoila, P.; Harabagiu, V. Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method. J. Am. Ceram. Soc. 2017, 100, 4511–4518. [Google Scholar] [CrossRef]
- Sampaio, D.V.; Silva, M.S.; Souza, N.R.S.; Santos, J.C.A.; Rezende, M.V.S.; Silva, R.S. Electrical characterization of BaTiO3 and Ba0.77Ca0.23TiO3 ceramics It synthesized by the proteic sol-gel method. Ceram. Int. 2018, 44, 15526–15530. [Google Scholar] [CrossRef]
- Zhang, X.T.; Cui, B.; Wang, J.; Jin, Q. The effect of a barium titanate xerogel precursor on the grain size and densification of fine-grained BaTiO3 ceramics. Ceram. Int. 2019, 45, 10626–10632. [Google Scholar] [CrossRef]
- Hongo, K.; Kurata, S.; Jomphoak, A.; Hayashi, K.; Maezono, R. Stabilization mechanism of the tetragonal structure in a hydrothermally synthesized BaTiO3 nanocrystal. Inorg. Chem. 2018, 57, 5413–5419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Ying, D.; Hua, X.; Zhou, M. Preparation of size controllable BaTiO3 nanoparticles in microemulsion at low temperature. Adv. Mater. Res. 2014, 1004, 63–68. [Google Scholar] [CrossRef]
- Shut, V.N.; Mozzharov, S.E.; Bobrovskii, V.V. Effect of ultrasonic processing on the synthesis of barium titanyl oxalate and the characteristics of the BaTiO3 powder prepared from it. Inorg. Mater. 2018, 54, 72–78. [Google Scholar] [CrossRef]
- Li, J.; Inukai, K.; Takahashi, Y.; Tsuruta, A.; Shin, W. Formation mechanism and dispersion of pseudo-tetragonal BaTiO3-PVP nanoparticles from different titanium precursors: TiCl4 and TiO2. Materials 2018, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Grendal, O.G.; Blichfeld, A.B.; Skjaervo, S.L.; Bee, W.; Selbach, S.M.; Grande, T.; Einarsrud, M. Facile low temperature hydrothermal synthesis of BaTiO3 nanoparticles studied by in situ X-ray diffraction. Crystals 2018, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Wang, L.; Bian, L.; Xu, J.B.; Chang, A.; Xiong, X.; Xu, F.; Zhang, J. Growth mechanism, modified morphology and optical properties of coral-like BaTiO3 architecture through CTAB assisted synthesis. J. Mater. Sci. Technol. 2015, 31, 223–228. [Google Scholar] [CrossRef]
- Ozen, M.; Mertens, M.; Snijkers, F.; Cool, P. Hydrothermal synthesis and formation mechanism of tetragonal barium titanate in a highly concentrated alkaline solution. Ceram. Int. 2016, 42, 10967–10975. [Google Scholar] [CrossRef]
- Gao, J.; Shi, H.; Yang, J.; Li, T.; Zhang, R.; Chen, D. Influencing factor investigation on dynamic hydrothermal growth of gapped hollow BaTiO3 nanospheres. Nanoscale Res. Lett. 2015, 10, 1033. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Tian, R.; Lin, X.; Chu, D.; Li, S. Formation and photocatalytic activity of BaTiO3 nanocubes via hydrothermal process. J. Nanomater. 2015, 2015, 692182. [Google Scholar] [CrossRef]
- Moghtada, A.; Moghadam, A.H.; Ashiri, R. Tetragonality enhancement in BaTiO3 by mechanical activation of the starting BaCO3 and TiO2 powders: Characterization of the contribution of the mechanical activation and postmilling calcination phenomena. Int. J. Appl. Ceram. Technol. 2018, 15, 1518–1531. [Google Scholar] [CrossRef]
- Katsuki, H.; Furuta, S.; Komarneni, S. Semi-continuous and fast synthesis of nanophase cubic BaTiO3 using a single-mode home-built microwave reactor. Mater. Lett. 2012, 83, 8–10. [Google Scholar] [CrossRef]
- Yasui, K.; Kato, K. Numerical simulations of sonochemical production and oriented aggregation of BaTiO3 nanocrystals. Ultrason. Sonochem. 2017, 35, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.C.; Wang, J.; Yu, Y.; Jiang, W.R.; Zhang, Z.C. Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl. Surf. Sci. 2018, 440, 1150–1158. [Google Scholar] [CrossRef]
- He, D.L.; Wang, Y.; Chen, X.Q.; Deng, Y. Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Compos. Part A Appl. Sci. Manuf. 2017, 93, 137–143. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, H.; Chen, C.; Zhou, K.C.; Zhang, D. Improved energy density and dielectric properties of P(VDF-HFP) composites with TiO2 nanowire clusters. J. Electroceram. 2018, 40, 65–71. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, H.; Chen, C.; Zhou, X.; Zhou, K.C.; Zhang, D. Enhanced energy density in P(VDF-HFP) nanocomposites with gradient dielectric fillers and interfacial polarization. J. Alloys Compd. 2017, 696, 1220–1227. [Google Scholar] [CrossRef]
- Wang, J.C.; Long, Y.C.; Sun, Y.; Zhang, X.Q.; Yang, H.; Lin, B. Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers. Appl. Surf. Sci. 2017, 426, 437–445. [Google Scholar] [CrossRef]
- Wang, J.C.; Long, Y.C.; Sun, Y.; Zhang, X.Q.; Yang, H.; Lin, B. Fabrication and enhanced dielectric properties of polyimide matrix composites with core-shell structured CaCu3Ti4O12@TiO2 nanofibers. J. Mater. Sci. Mater. Electron. 2018, 29, 7842–7850. [Google Scholar] [CrossRef]
- Dai, Y.; Zhu, X. Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J. Chem. Eng. 2018, 35, 1570–1576. [Google Scholar] [CrossRef]
Sample | [NaOH] (mol L−1) | RBa/Ti | Hydrothermal Temperature (°C) | Hydrothermal Duration (h) | Particle Size (nm) |
---|---|---|---|---|---|
S1 | 2 | 1.6 | 200 | 8 | 97 ± 15 |
S2 | 2 | 1.8 | 200 | 8 | 93 ± 24 |
S3 | 2 | 2.0 | 200 | 8 | 91 ± 22 |
S4 | 2 | 2.5 | 200 | 8 | 98 ± 26 |
S5 | 2 | 2.0 | 150 | 8 | 85 ± 15 |
S6 | 2 | 2.0 | 165 | 8 | 74 ± 13 |
S7 | 2 | 2.0 | 180 | 8 | 88 ± 10 |
S8 | 2 | 2.0 | 210 | 8 | 91 ± 14 |
S9 | 2 | 2.0 | 210 | 2 | 76 ± 17 |
S10 | 2 | 2.0 | 210 | 4 | 90 ± 15 |
S11 | 2 | 2.0 | 210 | 12 | 100 ± 20 |
S12 | 2 | 2.0 | 210 | 16 | 103 ± 20 |
Fillers | Polymer Matrix | Dielectric Constant | Break Strength | Dielectric Loss | Reference |
---|---|---|---|---|---|
BT microparticles | Resin | 32 | 20.8 V/μm | 0.014 | [25] |
BT microparticles | Resorcinol and formaldehyde | 16.6 | / | 0.019 | [31] |
PDA coated BT nanoparticles (100 nm)/BN nanosheets | Poly(vinylidene fluoride-chlorotrifluoroethylene) | 11.7 | 425 MV/m | 0.10 | [44] |
Sphere-like TiO2 nanowire clusters | Poly(vinylidene fluoride-co-hexafluoropylene) | 11.9 | 160 kV/mm | 0.048 | [46] |
CaCu3Ti4O12@TiO2 nanofibers | In suit prepared polyimide | 5.85 | 236 kV/mm | 0.025 | [49] |
PVP coated BT nanoparticles (100 nm) | Poly(vinylidene fluoride) | 80.4 | 240 kV/mm | 0.085 | [50] |
BT microparticles | Resin | 59 | 102 kV/mm | 0.008 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Gu, L.; Li, T.; Hao, S.; Tan, F.; Chen, D.; Zhu, D.; Xu, Y.; Sun, C.; Yang, Z. TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application. Crystals 2020, 10, 202. https://doi.org/10.3390/cryst10030202
Li M, Gu L, Li T, Hao S, Tan F, Chen D, Zhu D, Xu Y, Sun C, Yang Z. TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application. Crystals. 2020; 10(3):202. https://doi.org/10.3390/cryst10030202
Chicago/Turabian StyleLi, Ming, Lulu Gu, Tao Li, Shiji Hao, Furui Tan, Deliang Chen, Deliang Zhu, Yongjun Xu, Chenghua Sun, and Zhenyu Yang. 2020. "TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application" Crystals 10, no. 3: 202. https://doi.org/10.3390/cryst10030202
APA StyleLi, M., Gu, L., Li, T., Hao, S., Tan, F., Chen, D., Zhu, D., Xu, Y., Sun, C., & Yang, Z. (2020). TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application. Crystals, 10(3), 202. https://doi.org/10.3390/cryst10030202