Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Computational Details
2.3. Synthesis of [PhI(4-C6H4OMe)](SCN) (1)
2.4. Crystal Growth
2.5. X-Ray Structure Determination
3. Results & Discussion
3.1. Crystal Structural Descriptions
3.2. Relevant Structures with Heterooctameric Motif
3.3. Hirshfeld Surface Analysis for the X-Ray Structure of 1
3.4. Theoretical Study of XB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berger, G.; Soubhye, J.; Meyer, F. Halogen bonding in polymer science: From crystal engineering to functional supramolecular polymers and materials. Polym. Chem. 2015, 6, 3559–3580. [Google Scholar] [CrossRef]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef] [PubMed]
- Meazza, L.; Foster, J.A.; Fucke, K.; Metrangolo, P.; Resnati, G.; Steed, J.W. Halogen-bonding-triggered supramolecular gel formation. Nat. Chem. 2013, 5, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.; Sgarbossa, P.; Venzo, A.; Lelj, F.; Amati, M.; Resnati, G.; Pilati, T.; Metrangolo, P.; Terraneo, G. Halogen bonding in metal-organic-supramolecular networks. Coord. Chem. Rev. 2010, 254, 677–695. [Google Scholar] [CrossRef]
- Sinnwell, M.A.; Blad, J.N.; Thomas, L.R.; MacGillivray, L.R. Structural flexibility of halogen bonds showed in a single-crystal-to-single-crystal [2+2] photodimerization. IUCrJ 2018, 5, 491–496. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A. Molecular mechanical study of halogen bonding in drug discovery. J. Comput. Chem. 2011, 32, 2564–2574. [Google Scholar] [CrossRef]
- Scholfield, M.R.; Zanden, C.M.V.; Carter, M.; Ho, P.S. Halogen bonding (X-bonding): A biological perspective. Protein Sci. 2013, 22, 139–152. [Google Scholar] [CrossRef]
- Danelius, E.; Andersson, H.; Jarvoll, P.; Lood, K.; Gräfenstein, J.; Erdélyi, M. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation. Biochemistry 2017, 56, 3265–3272. [Google Scholar] [CrossRef]
- Sutar, R.L.; Huber, S.M. Catalysis of Organic Reactions through Halogen Bonding. ACS Catal. 2019, 9, 9622–9639. [Google Scholar] [CrossRef]
- Bulfield, D.; Huber, S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. A Eur. J. 2016, 22, 14434–14450. [Google Scholar] [CrossRef]
- Kinzhalov, M.A.; Kashina, M.V.; Mikherdov, A.S.; Mozheeva, E.A.; Novikov, A.S.; Smirnov, A.S.; Ivanov, D.M.; Kryukova, M.A.; Ivanov, A.Y.; Smirnov, S.N.; et al. Dramatically Enhanced Solubility of Halide-Containing Organometallic Species in Diiodomethane: The Role of Solvent⋅⋅⋅Complex Halogen Bonding. Angew. Chem. Int. Ed. 2018, 57, 12785–12789. [Google Scholar] [CrossRef] [PubMed]
- Landenberger, K.B.; Bolton, O.; Matzger, A.J. Energetic–Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization. J. Am. Chem. Soc. 2015, 137, 5074–5079. [Google Scholar] [CrossRef] [PubMed]
- Sivchik, V.V.; Solomatina, A.I.; Chen, Y.-T.; Karttunen, A.J.; Tunik, S.P.; Chou, P.-T.; Koshevoy, I.O. Halogen Bonding to Amplify Luminescence: A Case Study Using a Platinum Cyclometalated Complex. Angew. Chem. Int. Ed. 2015, 54, 14057–14060. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Kinzhalov, M.A.; Novikov, A.S.; Ananyev, I.V.; Romanova, A.A.; Boyarskiy, V.P.; Haukka, M.; Kukushkin, V.Y. H2C(X)–X···X– (X = Cl, Br) Halogen Bonding of Dihalomethanes. Cryst. Growth Des. 2017, 17, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.G.; Dragisic, B.; Sagoo, S.; Taylor, M.S. A Tridentate Halogen-Bonding Receptor for Tight Binding of Halide Anions. Angew. Chem. Int. Ed. 2010, 49, 1674–1677. [Google Scholar] [CrossRef]
- Caballero, A.; Zapata, F.; White, N.G.; Costa, P.J.; Félix, V.; Beer, P.D. A Halogen-Bonding Catenane for Anion Recognition and Sensing. Angew. Chem. Int. Ed. 2012, 51, 1876–1880. [Google Scholar] [CrossRef]
- Bock, H.; Holl, S. Wechselwirkungen in molekülkristallen, 179 [1, 2]. σ-donator/akzeptor-komplexe {I2C=CI2⋯X⊖} (X⊖ = Cl⊖, Br⊖, I⊖, SCN⊖) von tetraiodethen in tetra(n-butyl)ammoniumhalogenid-salzen. Z. Naturforsch. B 2002, 57, 713–725. [Google Scholar] [CrossRef]
- Bock, H.; Holl, S. Wechselwirkungen in Molekülkristallen, 180 [1, 2]. σ-Donator/Akzeptor-Komplexe {S(CI)4···X⊖}(X⊖ = I⊖, SCN⊖) von Tetraiodthiophen in Tetra(n-butyl)ammoniumhalogenid-Salzen/Interaction in Molecular Crystals, 180 [1, 2]. -Donor/Acceptor Complexes {S(CI)4·. Z. Naturforsch. B 2002, 57, 835–842. [Google Scholar] [CrossRef]
- Bock, H.; Holl, S. Wechselwirkungen in Molekülkristallen, 181 [1, 2]. σ-Donator/Akzeptor-Komplexe {MAI4···X⊖} (X⊖ = Br⊖, I⊖, SCN⊖) der Tetraiod-Akzeptormoleküle MAI4 (MA = Ethen, Thiophen, N-Methylpyrrol) in Tetraphenylphosphoniumhalogenid-Salzen Interaction in Molecula. Z. Naturforsch. B 2002, 57, 843–858. [Google Scholar]
- Cauliez, P.; Polo, V.; Roisnel, T.; Llusar, R.; Fourmigué, M. The thiocyanate anion as a polydentate halogen bond acceptor. CrystEngComm 2010, 12, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Viger-Gravel, J.; Korobkov, I.; Bryce, D.L. Multinuclear Solid-State Magnetic Resonance and X-ray Diffraction Study of Some Thiocyanate and Selenocyanate Complexes Exhibiting Halogen Bonding. Cryst. Growth Des. 2011, 11, 4984–4995. [Google Scholar] [CrossRef]
- Rosokha, S.V.; Stern, C.L.; Swartz, A.; Stewart, R. Halogen bonding of electrophilic bromocarbons with pseudohalide anions. Phys. Chem. Chem. Phys. 2014, 16, 12968–12979. [Google Scholar] [CrossRef] [PubMed]
- Grounds, O.; Zeller, M.; Rosokha, S.V. Structural preferences in strong anion-π and halogen-bonded complexes: π- And σ-holes vs. frontier orbitals interaction. New J. Chem. 2018, 42, 10572–10583. [Google Scholar] [CrossRef]
- Riel, A.M.S.; Jessop, M.J.; Decato, D.A.; Massena, C.J.; Nascimento, V.R.; Berryman, O.B. Experimental investigation of halogen-bond hard–soft acid–base complementarity. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2017, 73, 203–209. [Google Scholar] [CrossRef]
- Pramanik, A.; Majumdar, S.; Das, G. Aryl azo imidazoles assisted assembly of anion/anion–water through salt formation. CrystEngComm 2010, 12, 250–259. [Google Scholar] [CrossRef]
- Phonsri, W.; Harding, D.J.; Harding, P.; Murray, K.S.; Moubaraki, B.; Gass, I.A.; Cashion, J.D.; Jameson, G.N.L.; Adams, H. Stepped spin crossover in Fe(iii) halogen substituted quinolylsalicylaldimine complexes. Dalt. Trans. 2014, 43, 17509–17518. [Google Scholar] [CrossRef]
- Postnikov, P.S.; Guselnikova, O.A.; Yusubov, M.S.; Yoshimura, A.; Nemykin, V.N.; Zhdankin, V.V. Preparation and X-ray structural study of dibenziodolium derivatives. J. Org. Chem. 2015, 80, 5783–5788. [Google Scholar] [CrossRef]
- Hirschberg, M.E.; Barthen, P.; Frohn, H.J.; Bläser, D.; Tobey, B.; Jansen, G. Interaction of the electrophilic bis(pentafluorophenyl)iodonium cation [(C6F5)2I]+ with the ambident pseudohalogenide anions [SCN]- and [CN]-. J. Fluor. Chem. 2014, 163, 28–33. [Google Scholar] [CrossRef]
- Soldatova, N.S.; Postnikov, P.S.; Yusubov, M.S.; Wirth, T. Flow Synthesis of Iodonium Trifluoroacetates through Direct Oxidation of Iodoarenes by Oxone®. Eur. J. Org. Chem. 2019, 2019, 2081–2088. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, UK, 2010. [Google Scholar]
- Barros, C.L.; de Oliveira, P.J.P.; Jorge, F.E.; Canal Neto, A.; Campos, M. Gaussian basis set of double zeta quality for atoms Rb through Xe: Application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108, 1965–1972. [Google Scholar] [CrossRef]
- Canal Neto, A.; Jorge, F.E. All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations. Chem. Phys. Lett. 2013, 582, 158–162. [Google Scholar] [CrossRef]
- de Berrêdo, R.C.; Jorge, F.E. All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum(II) anticancer drugs. J. Mol. Struct. THEOCHEM 2010, 961, 107–112. [Google Scholar] [CrossRef]
- Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; MacHado, S.F. Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130, 064108. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2012, 2, 1–42. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii of Metals in Covalent Compounds. J. Phys. Chem. 1966, 70, 3006–3007. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Zhdankin, V.V. Hypervalent Iodine Chemistry; John Wiley & Sons Ltd: Chichester, UK, 2013; ISBN 9781118341155. [Google Scholar]
- Yusubov, M.S.; Maskaev, A.V.; Zhdankin, V.V. Iodonium salts in organic synthesis. Arkivoc 2011, 2011, 370–409. [Google Scholar]
- Bartashevich, E.V.; Tsirelson, V.G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Cavallo, G.; Murray, J.S.; Politzer, P.; Pilati, T.; Ursini, M.; Resnati, G. Halogen bonding in hypervalent iodine and bromine derivatives: Halonium salts. IUCrJ 2017, 4, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Alcock, N.W.; Countryman, R.M. Secondary bonding. Part 14. Structural isomerism in diaryliodonium halides and the structure of di(p-tolyl)iodonium bromide. J. Chem. Soc. Dalt. Trans. 1987, 193–196. [Google Scholar] [CrossRef]
- Lee, J.S.; Titus, D.D.; Ziolo, R.F. Structural Characterization of the Bioligomeric Triphenyltelluronium Thiocyanate Salt, ((C6H5)3Te(NCS))4((C6H5)3Te(NCS))2. Inorg. Chem. 1977, 16, 2487–2492. [Google Scholar] [CrossRef]
- Brantley, J.N.; Samant, A.V.; Toste, F.D. Isolation and reactivity of trifluoromethyl iodonium salts. ACS Cent. Sci. 2016, 2, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Bader Atoms in Molecules: A Quantum Theory; Oxford University Press, Clarendon Press: Oxford, UK, 1990; ISBN 9780198558651. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Saánchez, P.; Contreras-Garciáa, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliseeva, A.A.; Ivanov, D.M.; Novikov, A.S.; Rozhkov, A.V.; Kornyakov, I.V.; Dubovtsev, A.Y.; Kukushkin, V.Y. Hexaiododiplatinate(ii) as a useful supramolecular synthon for halogen bond involving crystal engineering. Dalt. Trans. 2020, 49, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Adonin, S.A.; Bondarenko, M.A.; Novikov, A.S.; Abramov, P.A.; Sokolov, M.N.; Fedin, V.P. Halogen bonding in the structures of pentaiodobenzoic acid and its salts. CrystEngComm 2019, 21, 6666–6670. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Ivanov, D.M.; Novikov, A.S.; Kukushkin, V.Y. Recognition of the π-hole donor ability of iodopentafluorobenzene-a conventional σ-hole donor for crystal engineering involving halogen bonding. CrystEngComm 2019, 21, 616–628. [Google Scholar] [CrossRef]
- Kryukova, M.; Sapegin, A.; Novikov, A.; Krasavin, M.; Ivanov, D. New Crystal Forms for Biologically Active Compounds. Part 1: Noncovalent Interactions in Adducts of Nevirapine with XB Donors. Crystals 2019, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.S.; Ivanov, D.M.; Bikbaeva, Z.M.; Bokach, N.A.; Kukushkin, V.Y. Noncovalent Interactions Involving Iodofluorobenzenes: The Interplay of Halogen Bonding and Weak lp(O)···π-Hole Arene Interactions. Cryst. Growth Des. 2018, 18, 7641–7654. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
C–I···X | d(I···X), Å | RIX | ∠(C–I···X), ° | ∠(I···X~C), ° | Eint a | Eint b |
---|---|---|---|---|---|---|
C7–I1···N1A | 2.850(2) | 0.81 | 164.97(8) | 157.2(2) | 8.5 | 8.4 |
C1–I1···S1A | 3.1833(7) | 0.84 | 169.92(6) | 89.66(8) | 6.0 | 5.9 |
C2I1···S1A c | 4.1531(7) | 1.10 | 98.21(6) 86.33(6) | 71.68(8) | 0.9 | 1.3 |
Moiety | Contributions of Different Intermolecular Contacts to the Molecular Hirshfeld Surface |
---|---|
{PhI(4-C6H4OMe)} | H···H 39.9%, C···H 27.0%, O···H 5.8%, S···H 5.5%, N···H 4.0%, I···N 3.5%, C···C 2.9%, I···C 2.7%, O···C 2.4%, I···H 2.4%, I···S 2.0%, N···C 1.1%, S···C 0.8% |
{SCN} | S···H 37.1%, N···H 16.4%, C···H 13.5%, I···N 7.6%, I···C 7.0%, I···S 6.1%, N···N 5.6%, N···C 3.8%, S···C 2.8% |
Contact * | ρ(r) | ∇2ρ(r) | λ2 | Hb | V(r) | G(r) | l ** | WI | Eint a | Eint b |
---|---|---|---|---|---|---|---|---|---|---|
I1···N29 | 0.025 | 0.076 | −0.028 | 0.000 | −0.020 | 0.020 | 2.850 | 0.04 | 8.5 | 8.4 |
I1···S118 | 0.023 | 0.053 | −0.022 | 0.000 | −0.014 | 0.014 | 3.183 | 0.07 | 6.0 | 5.9 |
I1···S58 | 0.004 | 0.015 | −0.005 | 0.001 | −0.002 | 0.003 | 4.153 | 0.00 | 0.9 | 1.3 |
H8···S58 | 0.007 | 0.018 | −0.009 | 0.001 | −0.003 | 0.004 | 2.976 | 0.00 | 0.9 | 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldatova, N.S.; Suslonov, V.V.; Kissler, T.Y.; Ivanov, D.M.; Novikov, A.S.; Yusubov, M.S.; Postnikov, P.S.; Kukushkin, V.Y. Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate. Crystals 2020, 10, 230. https://doi.org/10.3390/cryst10030230
Soldatova NS, Suslonov VV, Kissler TY, Ivanov DM, Novikov AS, Yusubov MS, Postnikov PS, Kukushkin VY. Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate. Crystals. 2020; 10(3):230. https://doi.org/10.3390/cryst10030230
Chicago/Turabian StyleSoldatova, Natalia S., Vitalii V. Suslonov, Troyana Yu. Kissler, Daniil M. Ivanov, Alexander S. Novikov, Mekhman S. Yusubov, Pavel S. Postnikov, and Vadim Yu. Kukushkin. 2020. "Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate" Crystals 10, no. 3: 230. https://doi.org/10.3390/cryst10030230
APA StyleSoldatova, N. S., Suslonov, V. V., Kissler, T. Y., Ivanov, D. M., Novikov, A. S., Yusubov, M. S., Postnikov, P. S., & Kukushkin, V. Y. (2020). Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate. Crystals, 10(3), 230. https://doi.org/10.3390/cryst10030230