Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MFO Nanofibers by Electrospinning
2.2. Preparation of MAPLE Targets
2.3. Deposition of MFO Nanofiber/GO Nanocomposite Films by MAPLE Technique
2.4. Morphological, Structural and Compositional Analyses
2.5. Investigation of Photocatalytic Degradation Efficiency of MFO Nanofiber/GO Nanocomposite Films under UV or Visible Light Irradiation
3. Results and Discussion
3.1. Morphological, Structural and Compositional Characterization
3.2. Photocatalytic Degradation of Methyl Orange
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ildefonso, Z.T.; José de Jesús, P.B.; Celeste Yunueth, T.L.; Luis, L.R.; Maria Luisa, M.L.; Yunny, M.V. A phenomenon of degradation of methyl orange observed during the reaction of NH4TiOF3 nanotubes with the aqueous medium to produce TiO2 anatase nanoparticles. RSC Adv. 2016, 6, 76167–76173. [Google Scholar] [CrossRef]
- Ghaedi, M.; Rahimi, M.R.; Ghaedi, A.M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood. J. Colloid. Interface Sci. 2016, 461, 425–434. [Google Scholar] [CrossRef]
- Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 2016, 284, 687–697. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Jassby, D.; Farner Budarz, J.; Wiesner, M. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Env. Sci. Technol. 2012, 46, 6934–6941. [Google Scholar] [CrossRef]
- Kamat, P.V. TiO2 Nanostructures: Recent physical chemistry advances. J. Phys. Chem. C 2012, 116, 11849–11851. [Google Scholar] [CrossRef]
- Pesci, F.M.; Wang, G.; Klug, D.R.; Li, Y.; Cowan, A.J. Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837–25844. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-T.; Liu, Y.; Liu, R.-H.; Sun, Z.-M.; Zhao, D.-S.; Kou, C.-G. Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Mater. Lett. 2010, 64, 223–225. [Google Scholar] [CrossRef]
- Niu, X.; Li, H.; Liu, G. Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A Chem. 2005, 232, 89–93. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Ludwig, T.; Bohr, C.; Queraltó, A.; Frohnhoven, R.; Fischer, T.; Mathur, S. Inorganic nanofibers by electrospinning techniques and their application in energy conversion and storage systems. In Semiconductors and Semimetals: Nanowires for Energy Applications; Sudha, M., Chennupati, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 98, pp. 1–70. [Google Scholar]
- Von Hagen, R.; Lorrmann, H.; Möller, K.-C.; Mathur, S. Electrospun LiFe1−yMnyPO4/C nanofiber composites as self-supporting cathodes in Li-Ion batteries. Adv. Energy Mater. 2012, 2, 553–559. [Google Scholar] [CrossRef]
- Queraltó, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S. LaFeO3 nanofibers for high detection of sulfur-containing gases. ACS Sustain. Chem. Eng. 2019. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 2010, 13, 16–27. [Google Scholar] [CrossRef]
- Fei, L.; Hu, Y.; Li, X.; Song, R.; Sun, L.; Huang, H.; Gu, H.; Chan, H.L.; Wang, Y. Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 2015, 7, 3665–3670. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, F.; Zhou, Z.; Song, W.; Chen, Q.; Ji, X. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties. Electrochim. Acta 2013, 113, 9–16. [Google Scholar] [CrossRef]
- Acharya, S.; Martha, S.; Sahoo, P.C.; Parida, K. Glimpses of the modification of perovskite with graphene-analogous materials in photocatalytic applications. Inorg. Chem. Front. 2015, 2, 807–823. [Google Scholar] [CrossRef]
- Ren, X.; Yang, H.; Gen, S.; Zhou, J.; Yang, T.; Zhang, X.; Cheng, Z.; Sun, S. Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale 2016, 8, 752–756. [Google Scholar] [CrossRef]
- Basith, M.A.; Ahsan, R.; Zarin, I.; Jalil, M.A. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 2018, 8, 11090. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ma, J.; Wang, L.; Huang, H. Preparation of La1−xSrxMnO3/graphene thin films and their photocatalytic activity. Mat. Sci. Eng. B 2014, 180, 46–53. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-Warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Xu, J.; Yan, B.; Maleki Kheimeh Sari, H.; Hao, Y.; Xiong, D.; Dou, S.; Liu, W.; Kou, H.; Li, D.; Li, X. Mesoporous ZnCo2O4/rGO nanocomposites enhancing sodium storage. Nanotechnology 2019, 30, 234005. [Google Scholar] [CrossRef]
- Palneedi, H.; Park, J.H.; Maurya, D.; Peddigari, M.; Hwang, G.T.; Annapureddy, V.; Kim, J.W.; Choi, J.J.; Hahn, B.D.; Priya, S.; et al. Laser irradiation of metal oxide films and nanostructures: Applications and advances. Adv. Mater. 2018, 30, e1705148. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Shinoda, K.; Tsuchiya, T. UV-assisted nucleation and growth of oxide films from chemical solutions. Chem. Soc. Rev. 2014, 43, 2027–2041. [Google Scholar] [CrossRef]
- Piqué, A. The matrix-assisted pulsed laser evaporation (MAPLE) process: Origins and future directions. Appl. Phys. A 2011, 105, 517–528. [Google Scholar] [CrossRef]
- Caricato, A.P.; Luches, A. Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: A review. Appl. Phys. A 2011, 105, 565–582. [Google Scholar] [CrossRef]
- Datcu, A.; Duta, L.; Perez del Pino, A.; Logofatu, C.; Luculescu, C.; Duta, A.; Perniu, D.; Gyorgy, E. One-step preparation of nitrogen doped titanium oxide/Au/reduced graphene oxide composite thin films for photocatalytic applications. RSC Adv. 2015, 5, 49771–49779. [Google Scholar] [CrossRef] [Green Version]
- Queraltó, A.; del Pino, A.P.; Logofatu, C.; Datcu, A.; Amade, R.; Bertran-Serra, E.; György, E. Reduced graphene oxide/iron oxide nanohybrid flexible electrodes grown by laser-based technique for energy storage applications. Ceram. Int. 2018, 44, 20409–20416. [Google Scholar] [CrossRef]
- György, E.; Logofatu, C.; Pérez del Pino, Á.; Datcu, A.; Pascu, O.; Ivan, R. Enhanced UV- and visible-light driven photocatalytic performances and recycling properties of graphene oxide/ZnO hybrid layers. Ceram. Int. 2018, 44, 1826–1835. [Google Scholar] [CrossRef]
- Pérez del Pino, Á.; Martínez Villarroya, A.; Chuquitarqui, A.; Logofatu, C.; Tonti, D.; György, E. Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage. J. Mater. Chem. A 2018, 6, 16074–16086. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.T.; Xu, X.J.; Ma, X.K.; Zhang, T. Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery. Nanotechnology 2011, 22, 115502. [Google Scholar] [CrossRef] [PubMed]
- Queraltó, A.; Frohnhoven, R.; Mathur, S.; Gómez, A. Intrinsic piezoelectric characterization of BiFeO3 nanofibers and its implications for energy harvesting. Appl. Surf. Sci. 2019, 509, 144760. [Google Scholar] [CrossRef]
- Scafetta, M.D.; Cordi, A.M.; Rondinelli, J.M.; May, S.J. Band structure and optical transitions in LaFeO3: Theory and experiment. J. Phys. Condens. Matter 2014, 26, 505502. [Google Scholar] [CrossRef] [PubMed]
- Chakrabartty, J.; Nechache, R.; Harnagea, C.; Li, S.; Rosei, F. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films. Nanotechnology 2016, 27, 215402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tugova, E.A.; Popova, V.F.; Zvereva, I.A.; Gusarov, V.V. Phase diagram of the LaFeO3-LaSrFeO4 system. Glass Phys. Chem. 2006, 32, 674–676. [Google Scholar] [CrossRef]
- Kallaev, S.N.; Bakmaev, A.G.; Reznichenko, L.A. Thermal diffusion and heat conductivity of BiFeO3 and Bi0.95La0.05FeO3 multiferroics at high temperatures. JETP Lett. 2013, 97, 470–472. [Google Scholar] [CrossRef]
- Železný, V.; Chvostová, D.; Pajasová, L.; Vrejoiu, I.; Alexe, M. Optical properties of epitaxial BiFeO3 thin films. Appl. Phys. A 2010, 100, 1217–1220. [Google Scholar] [CrossRef]
- Sürücü, G.; Erkisi, A. The investigation of electronic and thermo-elastic properties of lanthanum orthoferrite (LaFeO3) perovskite. Balk. Phys. Lett. 2017, 25, 1–19. [Google Scholar]
- Elements, A. Lanthanum Iron Oxide. Available online: https://www.americanelements.com/lanthanum-iron-oxide-12022-43-4 (accessed on 7 December 2019).
- Pérez del Pino, A.; György, E.; Logofatu, C.; Duta, A. Study of the deposition of graphene oxide by matrix-assisted pulsed laser evaporation. J. Phys. D Appl. Phys. 2013, 46, 505309. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, S.; Liu, R.; Dai, J.; Liu, X.; Yu, J. A novel route towards well-dispersed short nanofibers and nanoparticles via electrospinning. RSC Adv. 2016, 6, 30139–30147. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Li, J.; Zhang, Y. Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity. Mater. Lett. 2019, 241, 76–79. [Google Scholar] [CrossRef]
- O’Malley, S.M.; Tomko, J.; Pino, A.P.D.; Logofatu, C.; György, E. Resonant infrared and ultraviolet matrix-assisted pulsed laser evaporation of titanium oxide/graphene oxide composites: A comparative study. J. Phys. Chem. C 2014, 118, 27911–27919. [Google Scholar] [CrossRef]
- Paeng, D.; Lee, D.; Yeo, J.; Yoo, J.-H.; Allen, F.I.; Kim, E.; So, H.; Park, H.K.; Minor, A.M.; Grigoropoulos, C.P. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions. J. Phys. Chem. C 2015, 119, 6363–6372. [Google Scholar] [CrossRef]
- Liu, T.; Kim, D.; Han, H.; Yusoff, A.R.; Jang, J. Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells. Nanoscale 2015, 7, 10708–10718. [Google Scholar] [CrossRef]
- Goto, Y.; Kitamura, T.; Takada, T.; Kachi, S. Phase diagram of the system La2O3-Fe2O3. J. Jpn. Soc. Powder Powder Met. 1960, 7, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Calisir, I.; Hall, D.A. Chemical heterogeneity and approaches to its control in BiFeO3–BaTiO3 lead-free ferroelectrics. J. Mater. Chem. C 2018, 6, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.L.; Daniels, J.E.; Damjanovic, D.; Green, D.J. BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 2014, 97, 1993–2011. [Google Scholar] [CrossRef]
- Selbach, S.M.; Einarsrud, M.-A.; Grande, T. On the thermodynamic stability of BiFeO3. Chem. Mater. 2009, 21, 169–173. [Google Scholar] [CrossRef]
- Brewer, L. Thermodynamic properties of the oxides and their vaporization processes. Chem. Rev. 1953, 52, 1–75. [Google Scholar] [CrossRef]
- Patterson, A.L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Kotsedi, L.; Furlan, V.; Bharadwaj, V.; Kaviyarasu, K.; Sotillo, B.; Mtshali, C.B.; Matinise, N.; Demir, A.G.; Previtali, B.; Ramponi, R.; et al. Chromium oxide formation on nanosecond and femtosecond laser irradiated thin chromium films. Opt. Mater. 2019, 95, 109206. [Google Scholar] [CrossRef] [Green Version]
- Manonmani, M.; Jaikumar, V.; Gokul Raj, S.; Ramesh Kumar, G. Crystallization, non-isothermal kinetics and structural analysis of nanocrystalline multiferroic bismuth ferrite (BiFeO3) synthesized by combustion method. J. Therm. Anal. Calorim. 2019, 138, 185–193. [Google Scholar] [CrossRef]
- Miller, D.J.; Biesinger, M.C.; McIntyre, N.S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination? Surf. Interface Anal. 2002, 33, 299–305. [Google Scholar] [CrossRef]
- Milt, V.G.; Spretz, R.; Ulla, M.A.; Lombardo, E.A.; Fierro, J.L.G. The nature of active sites for the oxidation of methane on La-based perovskites. Catal. Lett. 1996, 42, 57–63. [Google Scholar] [CrossRef]
- Shard, A.G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf. Interface Anal. 2014, 46, 175–185. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Davidson, R.D.; Mycroft, J.R. Quantitative XPS Measurements of some oxides, sulphides and complex minerals. Surf. Interface Anal. 1996, 24, 591–596. [Google Scholar] [CrossRef]
- Morgan, W.E.; Stec, W.J.; Van Wazer, J.R. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955. [Google Scholar] [CrossRef]
- Oprea, B.; Radu, T.; Simon, S. XPS investigation of atomic environment changes on surface of B2O3-Bi2O3 glasses. J. Non-Cryst. Solids 2013, 379, 35–39. [Google Scholar] [CrossRef]
- Uchida, K.; Ayame, A. Dynamic XPS measurements on bismuth molybdate surfaces. Surf. Sci. 1996, 357–358, 170–175. [Google Scholar] [CrossRef]
- Dharmadhikari, V.S.; Sainkar, S.R.; Badrinarayan, S.; Goswami, A. Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1982, 25, 181–189. [Google Scholar] [CrossRef]
- Pawlak, D.A.; Woźniak, K.; Frukacz, Z.; Barr, T.L.; Fiorentino, D.; Hardcastle, S. ESCA studies of Yttrium orthoaluminum perovskites. J. Phys. Chem. B 1999, 103, 3332–3336. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Zhang, L.; Rong, Y.; Chen, J.; Ibrahim, K.; Xing, X. Effects of oxygen vacancy on the electronic structure and multiferroics in sol-gel derived Pb0.8Co0.2TiO3 thin films. Dalton Trans. 2013, 42, 10358–10364. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvan, A.; Balakumar, S.; Sakar, M.; Nayek, C.; Murugavel, P.; Saravana Kumar, K. Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 2014, 43, 5731–5738. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, G.; Cheng, L.; Yang, C.; Wu, W. Comparative study on aging effect in BiFeO3 thin films substituted at A- and B-sites. Appl. Phys. Lett. 2011, 99, 262901. [Google Scholar] [CrossRef] [Green Version]
- Takatani, S.; Miki, H.; Kushida-Abdelghafar, K.; Torii, K. Pt/PbZrxTi1−xO3 interfacial reaction and Schottky barrier formation studied by X-ray photoelectron spectroscopy: Effect of H2 and O2 annealing. J. Appl. Phys. 1999, 85, 7784–7791. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Zhang, L.; Ghimire, P.; Phuriragpitikhon, J.; Jiang, B.; Goncalves, A.A.S.; Jaroniec, M. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. J. Colloid Interface Sci. 2018, 513, 82–91. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Hosseinzadeh, G.; Davar, F. Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 2011, 509, 4098–4103. [Google Scholar] [CrossRef]
- del Pino, A.P.; González-Campo, A.; Giraldo, S.; Peral, J.; György, E.; Logofatu, C.; deMello, A.J.; Puigmartí-Luis, J. Synthesis of graphene-based photocatalysts for water splitting by laser-induced doping with ionic liquids. Carbon 2018, 130, 48–58. [Google Scholar] [CrossRef]
- Queraltó, A.; Pérez del Pino, Á.; Logofatu, C.; Datcu, A.; Amade, R.; Alshaikh, I.; Bertran, E.; Urzica, I.; György, E. MAPLE synthesis of reduced graphene oxide/silver nanocomposite electrodes: Influence of target composition and gas ambience. J. Alloys Compd. 2017, 726, 1003–1013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, L.; Wang, Z.; Xie, S.; Zhang, Y.; Shen, Y.; Yu, M.; Deng, B.; Huang, Q.; Fan, C.; et al. Radiation induced reduction: An effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 2012, 22, 7775–7781. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Xia, Y.; Shang, S.; Xiong, X.; Zeng, X.; Zhou, J.; Li, Y. Enhanced visible light driven photocatalytic behavior of BiFeO3/reduced graphene oxide composites. Nanomaterials 2018, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Baiocchi, C.; Brussino, M.C.; Pramauro, E.; Bianco Prevot, A.; Palmisano, L.; Marci, G. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int. J. Mass Spectrom. 2002, 214, 247–256. [Google Scholar] [CrossRef]
- Cui, Y.; Luan, J. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4. J. Env. Sci. 2015, 29, 51–61. [Google Scholar] [CrossRef]
- Haruna, A.; Abdulkadir, I.; Idris, S.O. Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 2020, 6, e03237. [Google Scholar] [CrossRef] [Green Version]
- Ponraj, C.; Vinitha, G.; Daniel, J. A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ. Nanotechnol. Monit. Manag. 2017, 7, 110–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Zhang, Q.; Dong, F.; Wang, F.; Xiong, Z. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. J. Mater. Chem. A 2014, 2, 16623–16631. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 2011, 46, 2622–2626. [Google Scholar] [CrossRef]
- Dai, J.F.; Xian, T.; Di, L.J.; Yang, H. Preparation of BiFeO3-graphene nanocomposites and their enhanced photocatalytic activities. J. Nanomater. 2013, 2013, 642897. [Google Scholar] [CrossRef]
Sample | kapp × 10−3 (min−1) | tsat (min) | Radiation |
---|---|---|---|
BFO + 1 wt.% GO | 2.0 | 30 | UV |
BFO + 5 wt.% GO | 2.5 | 120 | UV |
LFO + 1 wt.% GO | 2.5 | 450 | UV |
LFO + 5 wt.% GO | 2.6 | 450 | UV |
LFO + 5 wt.% GO (1st cycle) | 6 | 150 | Visible |
LFO + 5 wt.% GO (2nd cycle) | 4 | 60 | Visible |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queraltó, A.; György, E.; Ivan, R.; Pérez del Pino, Á.; Frohnhoven, R.; Mathur, S. Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation. Crystals 2020, 10, 271. https://doi.org/10.3390/cryst10040271
Queraltó A, György E, Ivan R, Pérez del Pino Á, Frohnhoven R, Mathur S. Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation. Crystals. 2020; 10(4):271. https://doi.org/10.3390/cryst10040271
Chicago/Turabian StyleQueraltó, Albert, Enikö György, Raluca Ivan, Ángel Pérez del Pino, Robert Frohnhoven, and Sanjay Mathur. 2020. "Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation" Crystals 10, no. 4: 271. https://doi.org/10.3390/cryst10040271
APA StyleQueraltó, A., György, E., Ivan, R., Pérez del Pino, Á., Frohnhoven, R., & Mathur, S. (2020). Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation. Crystals, 10(4), 271. https://doi.org/10.3390/cryst10040271