Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Medium
2.2. Solution-Scale-Inhibition Experiments
2.3. Scale-Inhibition Experiments under the Cathodic Polarization
2.4. Morphology and Structure Analysis of CaCO3 Crystals
3. Results and Discussion
3.1. Formation and Inhibition of CaCO3 Crystals in Solution
3.2. Formation and Inhibition of CaCO3 on the Cathode Surface
3.2.1. CaCO3 Crystals Formed on the Cathode Surface
3.2.2. Scale Inhibition of PBTCA on the Formation of CaCO3 on the Cathode Surface
3.3. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Liu, Y.; Zhang, N.; Ip, W.F.; Kan, A.T.; Tomson, M.B. A novel attach-and-release mineral scale control strategy: Laboratory investigation of retention and release of scale inhibitor on pipe surface. J. Ind. Eng. Chem. 2019, 70, 462–471. [Google Scholar] [CrossRef]
- Dayarathne, H.N.P.; Jeong, S.; Jang, A. Chemical-free scale inhibition method for seawater reverse osmosis membrane process: Air micro-nano bubbles. Desalination 2019, 461, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, M.; Zhu, J.; Li, H.; Zhou, W. Novel methods of oil fouling inhibition on surface of plate heat exchanger in simulated oilfield geothermal water. Int. J. Heat Mass Transf. 2017, 113, 961–974. [Google Scholar] [CrossRef]
- Al-Roomi, Y.M.; Hussain, K.F.; Al-Rifaie, M. Performance of inhibitors on CaCO3 scale deposition in stainless steel & copper pipe surface. Desalination 2015, 375, 138–148. [Google Scholar]
- Song, S.; Fan, J.; He, Z.; Zhan, L.; Liu, Z.; Chen, J.; Xu, X. Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim. Acta. 2010, 55, 3606–3613. [Google Scholar] [CrossRef]
- Fabiańska, A.; Białk-Bielińska, A.; Stepnowski, P.; Stolte, S.; Siedlecka, E.M. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation. J. Hazard. Mater. 2014, 280, 579–587. [Google Scholar] [CrossRef]
- Ketrane, R.; Saidani, B.; Gil, O.; Leleyter, L.; Baraud, F. Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: Effect of temperature and concentration. Desalination 2009, 249, 1397–1404. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, Y.; Wang, J.; Chang, H. Inhibition of calcium carbonate fouling on heat transfer surface using sodium carboxymethyl cellulose. Appl. Therm. Eng. 2009, 148, 1074. [Google Scholar] [CrossRef]
- Shakkthivel, P.; Vasudevan, T. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems. Desalination 2006, 197, 179–189. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; Sun, W.; Wang, M.; Tian, J.; Yang, Z.; Liu, G. The role of corrosion inhibition in the mitigation of CaCO3 scaling on steel surface. Corros. Sci. 2018, 140, 182–195. [Google Scholar] [CrossRef]
- Lourteau, T.; Berriche, H.; Kécili, K.; Heim, V.; Bricault, D.; Litaudon, M.; Cheap-Charpentier, H. Scale inhibition effect of Hylocereus undatus solution on calcium carbonate formation. J. Cryst. Growth 2019, 524, 125161. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, S.; Lai, Y.; Ma, C. Influence of ultrasound to convectional heat transfer with fouling of cooling water. Appl. Therm. Eng. 2016, 100, 340–347. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, H.; Wang, B.; Wang, J.; Zhao, Q. Characteristics of calcium carbonate fouling on heat transfer surfaces under the action of electric fields. J. Mech. Sci. Technol. 2018, 32, 3445–3451. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhang, C.; Wu, L.; Zhang, Q.; Zhu, L.; Zhao, R. Influence of alternating electromagnetic field and ultrasonic on calcium carbonate crystallization in the presence of magnesium ions. J. Cryst. Growth 2018, 499, 67–76. [Google Scholar] [CrossRef]
- Xuefei, M.; Lan, X.; Jiapeng, C.; Zikang, Y.; Wei, H. Experimental study on calcium carbonate precipitation using electromagnetic field treatment. Water. Sci. Technol. 2013, 67, 2784–2790. [Google Scholar] [CrossRef] [PubMed]
- Belarbi, Z.; Gamby, J.; Makhloufi, L.; Sotta, B.; Tribollet, B. Inhibition of calcium carbonate precipitation by aqueous extract of Paronychia argentea. J. Cryst. Growth. 2014, 386, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yao, Q.; Jiao, Q.; Liu, B.; Chen, H. Polyepoxysuccinic acid with hyper-branched structure as an environmentally friendly scale inhibitor and its scale inhibition mechanism. J. Saudi. Chem. Soc. 2019, 23, 61–74. [Google Scholar] [CrossRef]
- Cheap-Charpentier, H.; Gelus, D.; Pécoul, N.; Perrot, H.; Lédion, J.; Horner, O.; Roussi, F. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions. J. Cryst. Growth 2016, 443, 43–49. [Google Scholar] [CrossRef]
- Xu, Z.B.; Wang, W.L.; Huang, N.; Wu, Q.Y.; Lee, M.Y.; Hu, H.Y. 2-Phosphonobutane-1, 2, 4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal. Water Res. 2019, 148, 334–343. [Google Scholar] [CrossRef]
- Wang, L.T.; Ge, H.H.; Han, Y.T.; Wan, C.; Sha, J.Y.; Sheng, K. Effects of Al2O3 nanoparticles on the formation of inorganic scale on heat exchange surface with and without scale inhibitor. Appl. Therm. Eng. 2019, 151, 1–10. [Google Scholar] [CrossRef]
- Wang, F.; Ge, H.H.; Wu, K.; Wang, L.T.; Wan, C.; Sha, J.Y.; Zhao, Y.Z. Effects of Al2O3 nanoparticles on the crystallization of calcium carbonate in aqueous solution. J. Nanosci. Nanotechnol. 2019, 19, 3471–3478. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Cao, D.; Wang, Y.; Mohamad, C.; Chen, L.; Wang, H. Research on Growth Behavior of Calcium Carbonate Scale by Electrochemical Quartz Crystal Microbalance. Int. J. Electrochem. Sci. 2017, 12, 11955–11971. [Google Scholar] [CrossRef]
- Wang, L.C.; Zhu, C.G.; Liu, H.B.; Zhao, W.D.; Che, Y.; Zhang, Q.L.; Wang, L.B. Evaluation of maleic acid-based copolymers containing polyoxyethylene ether as inhibitors for CaCO3 scale. J. Appl. Polym. Sci. 2019, 136, 47470. [Google Scholar] [CrossRef]
- Cui, K.; Li, C.; Yao, B.; Yang, F.; Sun, G. Synthesis and evaluation of an environment-friendly terpolymer CaCO3 scale inhibitor for oilfield produced water with better salt and temperature resistance. J. Appl. Polym. Sci. 2020, 137, 48460. [Google Scholar] [CrossRef]
- Oshchepkov, M.; Kamagurov, S.; Tkachenko, S.; Ryabova, A.; Popov, K. Insight into the Mechanisms of Scale Inhibition: A Case Study of a Task-Specific Fluorescent-Tagged Scale Inhibitor Location on Gypsum Crystals. ChemNanoMat 2019, 5, 586–592. [Google Scholar] [CrossRef]
- Shen, Z.; Li, J.; Xu, K.; Ding, L.; Ren, H. The effect of synthesized hydrolyzed polymaleic anhydride (HPMA) on the crystal of calcium carbonate. Desalination 2012, 284, 238–244. [Google Scholar] [CrossRef]
- Kiaei, Z.; Haghtalab, A. Experimental study of using Ca-DTPMP nanoparticles in inhibition of CaCO3 scaling in a bulk water process. Desalination 2014, 338, 84–92. [Google Scholar] [CrossRef]
- Yang, X.; Huang, W.; Li, Y.; Wang, S. CaCO3 crystallization in 2, 3-epoxypropyltrimethylammonium chloride modified gelatin solutions. Powder Technol. 2017, 320, 368–376. [Google Scholar] [CrossRef]
- Nada, H.; Nishimura, T.; Sakamoto, T.; Kato, T. Heterogeneous growth of calcite at aragonite {001}-and vaterite {001}-melt interfaces: A molecular dynamics simulation study. J. Cryst. Growth 2016, 450, 148–159. [Google Scholar] [CrossRef]
- Miyazaki, T.; Arii, T.; Shirosaki, Y. Control of crystalline phase and morphology of calcium carbonate by electrolysis: Effects of current and temperature. Ceramics International. Ceram. Int. 2019, 45, 14039–14044. [Google Scholar] [CrossRef]
- Ma, Y.F.; Gao, Y.H.; Feng, Q.L. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls. J. Cryst. Growth 2010, 312, 3165–3170. [Google Scholar] [CrossRef]
- Reis, M.C.; Sousa, M.F.B.; Alobaid, F.; Bertran, C.A.; Wang, Y. A two-fluid model for calcium carbonate precipitation in highly supersaturated solutions. Adv. Powder. Technol. 2018, 29, 1571–1581. [Google Scholar] [CrossRef]
- Polat, S. Evaluation of the effects of sodium laurate on calcium carbonate precipitation: Characterization and optimization studies. J. Cryst. Growth 2019, 508, 8–18. [Google Scholar] [CrossRef]
- Chaussemier, M.; Pourmohtasham, E.; Gelus, D.; Pécoul, N.; Perrot, H.; Lédion, J.; Horner, O. State of art of natural inhibitors of calcium carbonate scaling. Desalination 2015, 356, 47–55. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Li, H. Selective flotation of apatite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as depressant. Miner. Eng. 2019, 136, 62–65. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, Y.; Le, J.; Qian, M.; Huan, Y.; Yang, W.; Chen, Y. Highly effective scale inhibition performance of amino trimethylenephosphonic acid on calcium carbonate. Desalination 2017, 422, 165–173. [Google Scholar] [CrossRef]
- Gopi, S.P.; Subramanian, V.K. Polymorphism in CaCO3—Effect of temperature under the influence of EDTA (di sodium salt). Desalination 2012, 297, 38–47. [Google Scholar] [CrossRef]
- Wen, R.M.; Deng, S.Q.; Zhu, Z.L.; Fan, W.; Zhang, Y.F. Studies on complexation of ATMP, PBTCA, PAA and PMAAA with Ca2+ in aqueous solutions. Chem. Res. Chin. Univ. 2004, 20, 36–39. [Google Scholar]
- Demadis, K.D.; Lykoudis, P.; Raptis, R.G.; Mezei, G. Phosphonopolycarboxylates as chemical additives for calcite scale dissolution and metallic corrosion inhibition based on a calcium-phosphonotricarboxylate organic-inorganic hybrid. Cryst. Growth Des. 2006, 6, 1064–1067. [Google Scholar] [CrossRef]
- Popov, K.; Rudakova, G.; Larchenko, V.; Tusheva, M.; Kamagurov, S.; Dikareva, J.; Kovaleva, N.A. Comparative Performance Evaluation of Some Novel “Green” and Traditional Antiscalants in Calcium Sulfate Scaling. Mat. Sci. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
Concentration of PBTCA (mg/L) | 2 | 4 | 8 |
---|---|---|---|
ηs (%) | 75 ± 2 | 96 ± 3 | 97 ± 3 |
Potentials (V) | −1.0 | −1.5 | ||||
---|---|---|---|---|---|---|
Concentration of PBTCA (mg/L) | 2 | 4 | 8 | 2 | 4 | 8 |
ηw (%) | 25 ± 1 | 47 ± 2 | 97 ± 3 | 18 ± 1 | 38 ± 2 | 72 ± 3 |
ηs (%) | 43 ± 2 | 83 ± 3 | 97 ± 3 | 32 ± 2 | 62 ± 2 | 87 ± 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, K.; Ge, H.; Huang, X.; Zhang, Y.; Song, Y.; Ge, F.; Zhao, Y.; Meng, X. Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions. Crystals 2020, 10, 275. https://doi.org/10.3390/cryst10040275
Sheng K, Ge H, Huang X, Zhang Y, Song Y, Ge F, Zhao Y, Meng X. Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions. Crystals. 2020; 10(4):275. https://doi.org/10.3390/cryst10040275
Chicago/Turabian StyleSheng, Kun, Honghua Ge, Xin Huang, Yi Zhang, Yanfang Song, Fang Ge, Yuzeng Zhao, and Xinjing Meng. 2020. "Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions" Crystals 10, no. 4: 275. https://doi.org/10.3390/cryst10040275
APA StyleSheng, K., Ge, H., Huang, X., Zhang, Y., Song, Y., Ge, F., Zhao, Y., & Meng, X. (2020). Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions. Crystals, 10(4), 275. https://doi.org/10.3390/cryst10040275