Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application
Abstract
:1. Introduction
2. Synthetic Methods of AuNCs
2.1. AuNCs Synthesized Using Proteins as the Templates
2.2. AuNCs Synthesized Using Peptides as the Templates
2.3. AuNCs Synthesized Using DNA as the Template
3. Applications of AuNCs-Based Biosensors
3.1. AuNCs-Based Fluorescent Sensors for Detection of DNA and MicroRNA
3.2. AuNCs-Based Fluorescent Sensors for Detection of Small Molecules with Biological Activity
3.3. AuNCs-Based Biosensor for Detection of Proteins
3.4. AuNCs for In Vivo Tumor Imaging
4. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Ye, F.; Zhao, Y.; Ei-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018, 18, 103–123. [Google Scholar] [CrossRef]
- Perfezou, M.; Turner, A.; Merkoci, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606–2622. [Google Scholar] [CrossRef]
- Vaidyanathan, R.; Soon, R.H.; Zhang, P.; Jiang, K.; Lim, C.T. Cancer diagnosis: From tumor to liquid biopsy and beyond. Lab Chip 2019, 19, 11–34. [Google Scholar] [CrossRef] [PubMed]
- De La Franier, B.; Thompson, M. Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for biosensor technology. Biosens. Bioelectron. 2019, 135, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xu, L.-P.; Zhang, X.; Wang, S. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, V.S.P.K.S.A.; das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef]
- Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178. [Google Scholar] [CrossRef]
- Wong, X.Y.; Sena-Torralba, A.; Alvarez-Diduk, R.; Muthoosamy, K.; Merkoci, A. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs. ACS Nano 2020, 14, 2585–2627. [Google Scholar] [CrossRef]
- Menon, J.U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B.; Nguyen, K.T. Nanomaterials for Photo-Based Diagnostic and Therapeutic Applications. Theranostics 2013, 3, 152–166. [Google Scholar] [CrossRef]
- Smith, B.R.; Gambhir, S.S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Dong, S.; Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418. [Google Scholar] [CrossRef]
- Shu, T.; Wang, J.; Su, L.; Zhang, X. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission. Crit. Rev. Anal. Chem. 2018, 48, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Xiang, S.; Fu, A. Recent progresses of fluorescent gold nanoclusters in biomedical applications. J. Nanosci. Nanotechnol. 2016, 16, 6597–6610. [Google Scholar] [CrossRef]
- Nie, L.; Xiao, X.; Yang, H. Preparation and biomedical applications of gold nanocluster. J. Nanosci. Nanotechnol. 2016, 16, 8164–8175. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wan, A. Luminescent gold nanoclusters for in vivo tumor imaging. Analyst 2020, 145, 348–363. [Google Scholar] [CrossRef]
- Maity, S.; Bain, D.; Patra, A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale 2019, 11, 22685–22723. [Google Scholar] [CrossRef]
- Cui, M.; Zhao, Y.; Song, Q. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends Anal. Chem. 2014, 57, 73–82. [Google Scholar] [CrossRef]
- Ungor, D.; Dekany, I.; Csapo, E. Reduction of tetrachloroaurate(III) ions with bioligands: Role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomaterials 2019, 9, 1229. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Jin, Y. Fluorescent Au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000–8011. [Google Scholar] [CrossRef]
- He, Z.; Shu, T.; Su, L.; Zhang, X. Strategies of luminescent gold nanoclusters for chemo-/bio-sensing. Molecules 2019, 24, 3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.X.; Goswami, N.; Shu, T.; Su, L.; Zhang, X.J. pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(I)-thiolate shell. Mater. Chem. Front. 2018, 2, 923–928. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.Y.; Xu, C.; Wang, X.L.; Liu, C.; Waterhouse, G.I.N.; Wang, Y.L.; Yin, H.Z. Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review. Talanta 2019, 200, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, M.; Mehdi, M.; Wang, G.; Gao, P.; Zhang, K.-Q. Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: A review. Mater. Chem. Front. 2019, 3, 1722–1735. [Google Scholar] [CrossRef]
- Kennedy, T.A.C.; MacLean, J.L.; Liu, J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem. Commun. 2012, 48, 6845–6847. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014, 58, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Ahmadi, E.; Borghei, Y.-S.; Reza Ganjali, M. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods Appl. Fluores. 2017, 5, 015005. [Google Scholar] [CrossRef]
- Wang, H.-B.; Li, Y.; Bai, H.-Y.; Liu, Y.-M. DNA-templated Au nanoclusters and MnO2 sheets: A label-free and universal fluorescence biosensing platform. Sens. Actuators B Chem. 2018, 259, 204–210. [Google Scholar] [CrossRef]
- Wang, L.L.; Qiao, J.; Liu, H.H.; Hao, J.; Qi, L.; Zhou, X.P.; Li, D.; Nie, Z.X.; Mao, L.Q. Ratiometric fluorescent probe based on gold nanoclusters and alizarin red-boronic acid for monitoring glucose in brain microdialysate. Anal. Chem. 2014, 86, 9758–9764. [Google Scholar] [CrossRef]
- Sha, Q.; Sun, B.; Yi, C.; Guan, R.; Fei, J.; Hu, Z.; Liu, B.; Liu, X. A fluorescence turn-on biosensor based on transferrin encapsulated gold nanoclusters for 5-hydroxytryptamine detection. Sens. Actuators B Chem. 2019, 294, 177–184. [Google Scholar] [CrossRef]
- Nebu, J.; Anjali Devi, J.S.; Aparna, R.S.; Aswathy, B.; Lekha, G.M.; Sony, G. Potassium triiodide-quenched gold nanocluster as a fluorescent turn-on probe for sensing cysteine/homocysteine in human serum. Anal. Bioanal. Chem. 2019, 411, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.L.; Liu, J.M.; Wang, X.X.; Lin, L.P.; Jiao, L.; Zhang, L.H.; Zheng, Z.Y.; Lin, S.Q. Selective determination of cysteine using BSA-stabilized gold nanoclusters with red emission. Analyst 2012, 137, 5346–5351. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, X.; Su, L.; Yin, J.; Shu, T.; Zhang, X. Chemical etching of pH-sensitive aggregationinduced emission- active gold nanoclusters for ultra- sensitive detection of cysteine. Nanoscale 2019, 11, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Shu, T.; Su, L.; Wang, J.; Li, C.; Zhang, X. Chemical etching of bovine serum albumin-protected Au-25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens. Bioelectron. 2015, 66, 155–161. [Google Scholar] [CrossRef]
- Shu, T.; Wang, J.; Su, L.; Zhang, X. Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine. Anal. Chem. 2016, 88, 11193–11198. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, H.; Ouyang, Q.; Wei, H. Deciphering the quenching mechanism of 2D MnO2 nanosheets towards Au nanocluster fluorescence to design effective glutathione biosensors. Anal. Meth. 2016, 8, 3935–3940. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, Y.; Zhang, X.; Zhang, S. A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe. Talanta 2016, 154, 190–196. [Google Scholar] [CrossRef]
- Wen, Q.; Gu, Y.; Tang, L.-J.; Yu, R.-Q.; Jiang, J.-H. Peptide-Templated Gold Nanocluster Beacon as a Sensitive, Label-Free Sensor for Protein Post-translational Modification Enzymes. Anal. Chem. 2013, 85, 11681–11685. [Google Scholar] [CrossRef]
- Nguyen, P.D.; Cong, V.T.; Baek, C.; Min, J. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens. Bioelectron. 2017, 89, 666–672. [Google Scholar] [CrossRef]
- Liu, Q.; Na, W.; Wang, L.; Su, X. Gold nanocluster-based fluorescent assay for label-free detection of protein kinase and its inhibitors. Microchim. Acta 2017, 184, 3381–3387. [Google Scholar] [CrossRef]
- Song, W.; Liang, R.-P.; Wang, Y.; Zhang, L.; Qiu, J.-D. Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity. Chem. Commun. 2015, 51, 10006–10009. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Kong, D.; Jin, R.; Zhao, X.; Liu, F.; Yan, X.; Lin, Y.; Lu, G. Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters. Sens. Actuators B Chem. 2019, 282, 366–372. [Google Scholar] [CrossRef]
- Jiang, H.; Su, X.; Zhang, Y.; Zhou, J.; Fang, D.; Wang, X. Unexpected thiols triggering photoluminescent enhancement of cytidine stabilized Au nanoclusters for sensitive assays of glutathione reductase and its inhibitors screening. Anal. Chem. 2016, 88, 4766–4771. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Cao, B.; Li, C.; Lu, Y. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase. Sens. Actuators B Chem. 2019, 301, 127080. [Google Scholar] [CrossRef]
- Qu, F.; Meng, L.; Zi, Y.; You, J. Ratiometric detection of alkaline phosphatase based on aggregation-induced emission enhancement. Anal. Bioanal. Chem. 2019, 411, 7431–7440. [Google Scholar] [CrossRef]
- You, J.G.; Tseng, W.L. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal. Chim. Acta 2019, 1078, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, S.; Reddy, A.S.; Kim, J.; Yun, K. Sensitive detection of epinephrine in human serum via fluorescence enhancement of gold nanoclusters. Appl. Surf. Sci. 2019, 498, 143837. [Google Scholar] [CrossRef]
- Ungor, D.; Horvath, K.; Dekany, I.; Csapo, E. Red-emitting gold nanoclusters for rapid fluorescence sensing of tryptophan metabolites. Sens. Actuators B Chem. 2019, 288, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Jia, X.; Li, J.; Wang, E. Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal. Chem. 2015, 87, 4897–4902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, F.G.; Liu, P.; Gu, N.; Chen, Z. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: Glutathione detection and selective cancer cell imaging. Small 2014, 10, 5170–5177. [Google Scholar] [PubMed]
- Liu, J.; Gan, L.L.; Yang, X.M. Glutenin-directed gold nanoclusters employed for assaying vitamin B-1. New J. Chem. 2020, 44, 487–491. [Google Scholar] [CrossRef]
- Chen, T.; Hu, Y.; Cen, Y.; Chu, X.; Lu, Y. A Dual-Emission Fluorescent Nanocomplex of Gold-Cluster-Decorated Silica Particles for Live Cell Imaging of Highly Reactive Oxygen Species. J. Am. Chem. Soc. 2013, 135, 11595–11602. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.F.; Li, M.; Zhang, Y.; Dong, C.; Zhang, G.M.; Shi, L.H.; Li, G.; Yuan, M.J.; Shuang, S.M. Facile, rapid one-pot synthesis of multifunctional gold nanoclusters for cell imaging, hydrogen sulfide detection and pH sensing. Talanta 2019, 197, 1–11. [Google Scholar] [CrossRef]
- Ding, C.; Tian, Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 2015, 65, 183–190. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, X.X.; Wang, Y.; Zhao, N.W.; Xiong, Z.H.; Huang, C.Z. Rapid synthesis of highly luminescent and stable Au-20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale 2014, 6, 2261–2269. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Li, B.; Ren, X.; Li, S.; Mahounga, D.M.; Cui, S.; Gu, Y.; Achilefu, S. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale 2012, 4, 6050–6064. [Google Scholar] [CrossRef]
- Pyo, K.; Ly, N.H.; Yoon, S.Y.; Shen, Y.; Choi, S.Y.; Lee, S.Y.; Joo, S.W.; Lee, D. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging. Adv. Healthc. Mater. 2017, 6, 1700203. [Google Scholar] [CrossRef]
- Chen, D.; Li, B.; Cai, S.; Wang, P.; Peng, S.; Sheng, Y.; He, Y.; Gu, Y.; Chen, H. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials 2016, 100, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Wang, A.-J.; Feng, H.; Feng, J.-J.; Qian, Z. Simple fabrication of eptifibatide stabilized gold nanoclusters with enhanced green fluorescence as biocompatible probe for in vitro cellular imaging. Sens. Actuators B Chem. 2017, 241, 1057–1062. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Huang, H.; Feng, J.-J.; Wang, A.-J.; Shao, L.-X. Green and facile synthesis of l -carnosine protected fluorescent gold nanoclusters for cellular imaging. Sens. Actuators B Chem. 2016, 223, 40–44. [Google Scholar] [CrossRef]
- Li, Z.; Peng, H.; Liu, J.; Tian, Y.; Yang, W.; Yao, J.; Shao, Z.; Chen, X. Plant Protein-Directed Synthesis of Luminescent Gold Nanocluster Hybrids for Tumor Imaging. ACS Appl. Mater. Interfaces 2018, 10, 83–90. [Google Scholar] [CrossRef] [PubMed]
Target | Design Strategy | Fluorescence Signal | Response Type | Detection Limit | Dynamic Range | Ref |
---|---|---|---|---|---|---|
microRNA-21 | DNA-AuNCs | Single | on | 0.7 pM | 1 pM−10 nM | [29] |
DNA Thrombin | DNA-AuNCs-MnO2 | Single | on | 0.2 nM 0.1 nM | 0.5−20 nM 0.2−20 nM | [30] |
Glucose | Ovalbumin-AuNCs | Ratiometric | on | 0.1 mM | 0.50−10.0 mM | [31] |
5-HT | Transferrin-AuNCs | Single | on | 0.049 μM | 0.2−50 μM | [32] |
Cys Hcy | BSA-AuNCs | Single | on | 9 nM 12 nM | 0.0057−5 μM 8−25 μM | [33] |
Cys | BSA- AuNCs | Single | on | 1.2 nM | 2−800 nM | [34] |
Cys | BSA- AuNCs | Single | off | 6.3 pM | 10 pM−2 mM | [35] |
Cys | BSA-AuNCs | Single | off | 0.15 μM | 0.5−10 μM | [36] |
TCEP | BSA-AuNCs | Ratiometric | on | 0.13 μM | 0.5−50 μM | [37] |
GSH | BSA-AuNCs | Single | on | 0.1 mM | 0.1−2.0 mM | [38] |
H2S | BSA-AuNCs-FITC | Ratiometric | on | 0.73 μM | 7−100 μM | [39] |
HDAC 1 PKA | Peptide-AuNCs | Single | off | 5 pM 6 pM | 15 pM−30 nM 15 pM−60 nM | [40] |
MMP-9 | Peptide-AuNCs-GO | Single | on | 2.5 ng/mL | 5−20 ng/mL | [41] |
PKA | Peptide-AuNCs | Single | on | 0.02 U/mL | 0.05−1.6 U/mL | [42] |
PKA | Peptide-AuNCs | Single | on | 0.004 U/L | 0.01−40 UmL | [43] |
Trypsin | Glutathione-AuNCs | Single | on | 0.08 μg/mL | 0.2−100 μg/mL | [44] |
GSH GR | Cytidine-AuNCs | Single | on | 2.0 nM 0.34 U/L | 20 nM−3 μM 0.34−17.0 U/L | [45] |
ALP | BSA-AuNCs | Single | on | 0.16 U/mL | 1−6 U/mL | [46] |
ALP | GSH-AuNCs-SiNPs | Ratiometric | on | 0.23U/L | 0.5−10 U/L | [47] |
Heparin Trypsin ALP | Peptide-AuNCs | Single | off off on | 3 nM 0.3 nM 0.3 U/L | 8−80 nM 1−100 nM 1−10 U/L | [48] |
Epinephrine | BSA-AuNCs | Single | off | 587 pM | 10−100 μM | [49] |
kynurenine | γ-globulin-AuNCs | Single | off | 5 μM | 15−100 μM | [50] |
Tyrosinase Dopamine | GSH-AuNCs | Ratiometric | on | 0.006 U/mL 1 nM | 0.006−3.6 U/mL 1 nM−1 mM | [51] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Shu, T.; Su, L.; Zhang, X. Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals 2020, 10, 357. https://doi.org/10.3390/cryst10050357
Bai Y, Shu T, Su L, Zhang X. Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals. 2020; 10(5):357. https://doi.org/10.3390/cryst10050357
Chicago/Turabian StyleBai, Yunlong, Tong Shu, Lei Su, and Xueji Zhang. 2020. "Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application" Crystals 10, no. 5: 357. https://doi.org/10.3390/cryst10050357
APA StyleBai, Y., Shu, T., Su, L., & Zhang, X. (2020). Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals, 10(5), 357. https://doi.org/10.3390/cryst10050357