(Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cordoba, J.M.; Chicardi, E.; Gotor, F.J. Liquid-phase sintering of Ti (C, N)-based cermets. The effects of binder nature and content on the solubility and wettability of hard ceramic phases. J. Alloys Compd. 2013, 559, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.; Davim, J.P. Tribology of Ceramics and Ceramic Matrix Composites. In Tribology for Scientists and Engineers; Springer: New York, NY, USA, 2013; pp. 211–231. [Google Scholar]
- Caccia, M.; Tabandeh-Khorshid, M.; Itskos, G.; Strayer, A.R.; Caldwell, A.S.; Pidaparti, S.; Singnisai, S.; Rohskopf, A.D.; Schroeder, A.M.; Jarrahbashi, D.; et al. Ceramic–metal composites for heat exchangers in concentrated solar power plants. Nature 2018, 562, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, A.; Ghazali, M.; Junaidi, S.; Daud, A. Development and application of tool wear: A review of the characterization of tic-based cermets with different binders. Chem. Eng. J. 2014, 255, 445–452. [Google Scholar] [CrossRef]
- Guo, X.; Yang, H.; Zhu, X.; Zhang, L. Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN. Scr. Mater. 2013, 68, 281–284. [Google Scholar] [CrossRef]
- Aslantas, K.; Ucun, I.; Cicek, A. Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear 2012, 274, 442–451. [Google Scholar] [CrossRef]
- Singh, P.; Singh, B.; Kumar, M.; Kumar, A. One step reduction of boric acid to boron carbide nano particles. Ceram. Int. 2014, 40, 15331–15334. [Google Scholar] [CrossRef]
- Toth, L. Transition Metal Carbides and Nitrides; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Funamori, N.; Sato, T. A cubic boron nitride gasket for diamond-anvil experiments. Rev. Sci. Instrum. 2008, 79, 053903. [Google Scholar] [CrossRef]
- Muguthu, J.N.; Gao, D. Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs). Mater. Manuf. Process. 2013, 28, 1102–1109. [Google Scholar] [CrossRef]
- Abderrazak, H.; Schoenstein, F.; Abdellaoui, M.; Jouini, N. Spark plasma sintering consolidation of nanostructured TiC prepared by mechanical alloying. Int. J. Refract. Met. Hard Mater. 2011, 29, 170–176. [Google Scholar] [CrossRef]
- Razavi, M.; Rajabi-Zamani, A.H.; Rahimipour, M.R.; Kaboli, R.; Shabani, M.O.; Yazdani-Rad, R. Synthesis of Fe–TiC–Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation. Ceram. Int. 2011, 37, 443–449. [Google Scholar] [CrossRef]
- Wei, S.; Xu, B.Q.; Bin, Y.; Sun, H.Y.; Song, J.X.; Wan, H.L.; Dai, Y.N. Preparation of TiC powders by carbothermal reduction method in vacuum. Trans. Nonferrous Met. Soc. China 2011, 21, 185–190. [Google Scholar]
- Kang, Y.; Kang, S. WC-reinforced (Ti,W)(CN). J. Eur. Ceram. Soc. 2010, 30, 793–798. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Jia, Q.; Ye, G. Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. J. Sol-Gel Sci. Technol. 2008, 46, 217–222. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Zhang, X.; Rong, C. Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C, N)–Co cermets. Int. J. Refract. Met. Hard Mater. 2008, 26, 33–40. [Google Scholar] [CrossRef]
- Wu, Y.; Xiong, J.; Guo, Z.; Yang, M.; Chen, J.; Xiong, S.; Fan, H.; Luo, J. Microstructure and fracture toughness of Ti (C0.7N0.3)-WC-Ni cermets. Int. J. Refract. Met. Hard Mater. 2011, 29, 85–89. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; You, M.; Tan, H.; Xiong, W. Fabrication of nanocomposite Ti (C, N)-based cermet by spark plasma sintering. Mater. Chem. Phys. 2005, 92, 64–70. [Google Scholar] [CrossRef]
- Shi, X.; Wang, M.; Xu, Z.; Zhai, W.; Zhang, Q. Tribological behavior of Ti3SiC2 /(WC–10Co) composites prepared by spark plasma sintering. Mater. Des. 2013, 45, 365–376. [Google Scholar] [CrossRef]
- Klaasen, H.; Kübarsepp, J.; Sergejev, F. Strength and failure of TiC based cermets. Powder Metall. 2009, 52, 111–115. [Google Scholar] [CrossRef]
- Compton, B.; Zok, F. Impact resistance of TiC-based cermets. Int. J. Impact Eng. 2013, 62, 75–87. [Google Scholar] [CrossRef]
- Stewart, T.L.; Plucknett, K.P. The sliding wear of TiC and Ti (C, N) cermets prepared with a stoichiometric Ni3Al binder. Wear 2014, 218, 153–167. [Google Scholar] [CrossRef]
- Bhaskar, U.K.; Pradhan, S. One-step mechanosynthesis of nano structured Ti (CxN1− x) cermets at room temperature and their microstructure characterization. Mater. Chem. Phys. 2012, 134, 1088–1096. [Google Scholar] [CrossRef]
- Liang, M.; Xiong, J.; Guo, Z.; Wan, W.; Dong, G. The influence of TiN content on erosion– corrosion behavior of Ti (C, N)-based cermets. Int. J. Refract. Met. Hard Mater. 2013, 41, 210–215. [Google Scholar] [CrossRef]
- Liu, N.; Xu, Y.; Li, Z.; Chen, M.; Li, G.; Zhang, L. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermets with nano-TiN modification. Ceram. Int. 2003, 29, 919–925. [Google Scholar] [CrossRef]
- Maweja, K.; Cornish, L.; Can, N. Annealing behaviour of sub-stoichiometric Ti (C, N)–W mechanical alloy powders. Int. J. Refract. Met. Hard Mater. 2011, 29, 445–451. [Google Scholar] [CrossRef]
- Han, C.; Kong, M. Fabrication and properties of TiC-based cermet with intra/intergranular microstructure. Mater. Des. 2009, 30, 1205–1208. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Li, Y. Carbon nanotube/ultrafine grade Ti (C, N) based cermets composite. Mater. Sci. Technol. 2011, 27, 1287–1293. [Google Scholar] [CrossRef]
- Seo, M.; Kim, J.; Kang, S. Effect of carbon content on the microstructure and properties of (Ti0.7W0.3)C-Ni cermet. Int. J. Refract. Met. Hard Mater. 2011, 29, 424–428. [Google Scholar] [CrossRef]
- Aykut, S.; Bagci, E.; Kentli, A.; Yazıcıoğlu, O. Experimental observation of tool wear, cutting forces and chip morphology in face milling of cobalt based super-alloy with physical vapour deposition coated and uncoated tool. Mater. Des. 2007, 28, 1880–1888. [Google Scholar] [CrossRef]
- Ettmayer, P.; Kolaska, H.; Lengauer, W.; Dreyer, K. Ti (C, N) cermets—Metallurgy and properties. Int. J. Refract. Met. Hard Mater. 1995, 13, 343–351. [Google Scholar] [CrossRef]
- Chen, L.; Lengauer, W.; Dreyer, K. Advances in modern nitrogen-containing hardmetals and cermets. Int. J. Refract. Met. Hard Mater. 2000, 18, 153–161. [Google Scholar] [CrossRef]
- Zhou, S.-Z.; Tan, J.-H.; Peng, W.-Z.; Wang, S.-Q.; Li, P. Sintering technology of Ti (C, N) base cermets. Trans. Nonferrous Met. Soc. China 2009, 19, s696–s700. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Zhong, J.; Yuan, Q.; Wu, P. Effect of carbon content and cooling mode on the microstructure and properties of Ti (C, N)-based cermets. Int. J. Refract. Met. Hard Mater. 2009, 27, 1009–1013. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, W.; Wang, S.; Xiong, W. Effect of carbon content on the microstructure and mechanical properties of Ti (C, N)-based cermets. Ceram. Int. 2004, 30, 2111–2115. [Google Scholar] [CrossRef]
- Liu, N.; Liu, X.; Zhang, X.; Zhu, L. Effect of carbon content on the microstructure and mechanical properties of superfine Ti (C, N)-based cermets. Mater. Charact. 2008, 59, 1440–1446. [Google Scholar] [CrossRef]
- Li, P.; Ye, J.; Liu, Y.; Yang, D.; Yu, H. Study on the formation of core–rim structure in Ti (CN)- based cermets. Int. J. Refract. Met. Hard Mater. 2012, 35, 27–31. [Google Scholar] [CrossRef]
- Wang, L.; Sui, W.; Luan, S.; Song, R.; Tan, J. Sintering behavior and dielectric properties of Ce doped strontium barium niobate ceramics with silica sintering additive. Mater. Chem. Phys. 2012, 134, 531–535. [Google Scholar] [CrossRef]
- Andrén, H.-O. Microstructure development during sintering and heat-treatment of cemented carbides and cermets. Mater. Chem. Phys. 2001, 67, 209–213. [Google Scholar] [CrossRef]
- Tsai, K.-M.; Hsieh, C.-Y.; Lu, H.-H. Sintering of binderless tungsten carbide. Ceram. Int. 2010, 36, 689–692. [Google Scholar] [CrossRef]
- Estrada-Guel, I.; Carreno-Gallardo, C.; Cardoso-Cortes, J.; Rocha-Rangel, E.; Herrera-Ramirez, J.; Martinez-Sanchez, R. Effect of metallic addition on mechanical properties in an aluminum–graphite composite synthesized by means of mechanical milling. J. Alloys Compd. 2010, 495, 403–407. [Google Scholar] [CrossRef]
- Kot, M.; Major, L.; Chronowska-Przywara, K.; Lackner, J.; Waldhauser, W.; Rakowski, W. The advantages of incorporating CrxC nanograins into an aC: H matrix in tribological coatings. Mater. Des. 2014, 56, 981–989. [Google Scholar] [CrossRef]
- Lengauer, W.; Scagnetto, F. Ti(C,N)-based cermets: Critical review of achievements and recent developments. Solid State Phenom. 2018, 274, 53–100. [Google Scholar] [CrossRef]
- Ettmayer, P. Hardmetals and cermets. Annu. Rev. Maler. Sci. 1989, 19, 145–154. [Google Scholar] [CrossRef]
- Seplyarskii, B.S.; Kostin, S.V.; Brauer, G.B. Combustion of bulk density powder mixtures in a coflow of nitrogen gas: 3. The Ti-(Ti + 0.5C) layered system. Int. J. Self-Propagating High-Temp. Synth. 2008, 17, 121–124. [Google Scholar] [CrossRef]
- Humenic, M.; Parikh, N.M. Fundamental concepts related to the microstructure and physical properties of cermet systems. J. Am. Ceram. Soc. 1956, 39, 60–63. [Google Scholar] [CrossRef]
- Kieffer, R.; Ettmayer, P.; Freudhofmeier, M. Novel types of nitride and carbo-nitride hard metals. Metall 1971, 25, 335–342. [Google Scholar]
- Rudy, E. Boundary phase stability and critical phenomena in high order solid solution systems. J. Less-Common Met. 1973, 33, 43–70. [Google Scholar] [CrossRef]
- Aramian, A.; Sadeghian, Z.; Prashanth, K.G.; Berto, F. In situ fabrication of TiC-NiCr cermets by selective laser melting. Int. J. Refract. Met. Hard Mater. 2019, 87, 105171. [Google Scholar] [CrossRef]
- Delbari, S.A.; Sabahi Namini, A.; Shahedi Asl, M. Hybrid Ti matrix composites with TiB2 and TiC compounds. Mater. Today Commun. 2019, 20, 100576. [Google Scholar] [CrossRef]
- Qi, Q.; Liu, Y.; Zhang, H.; Zhao, J.; Huang, Z. The adjustment of microstructure and properties of TiC/Ni-Cr composites by Mo addition applied for intermediate temperature solid oxide fuel cell interconnects. J. Alloys Compd. 2016, 678, 375–382. [Google Scholar] [CrossRef]
- Yerui, F.; Yongfeng, G.; Zongfeng, L. Experimental investigation of EDM parameters for TiC/Ni cermet machining. Procedia CIRP 2016, 42, 18–22. [Google Scholar] [CrossRef]
- Durlu, N. Titanium carbide-based composites for high-temperature applications. J. Eur. Ceram. Soc. 2002, 19, 2415–2419. [Google Scholar] [CrossRef]
- Komratov, G.N. Kinetics of oxidation SHS of titanium carbide and titanium and chromium double carbide powders in air. Powder Metall. Met. Ceram. 1993, 32, 509–511. [Google Scholar] [CrossRef]
- Borisov, Y.S.; Borisova, A.L.; Kolomytsev, M.V.; Masyuchok, O.P.; Timofeeva, I.I.; Vasilkovskaya, M.A. Protective and functional powder coatings high-velocity air plasma spraying of (Ti, Cr)C–32 wt.% Ni clad powder. Powder Metall. Met. Ceram. 2017, 56, 305–315. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S. Combustion synthesis of advanced materials: Fundamentals and applications. Korean J. Chem. Eng. 2004, 21, 527–536. [Google Scholar] [CrossRef]
- Zhang, W.N.; Wang, H.Y.; Wang, P.J.; Zhang, J.; He, L.; Jiang, Q.C. Effect of Cr content on the SHS reaction of Cr–Ti–C system. J. Alloys Compd. 2008, 465, 127–131. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Chen, K. Combustion synthesis of refractory and hard materials: A review. Int. J. Refract. Met. Hard Mater. 2013, 39, 90–102. [Google Scholar] [CrossRef]
- Nersisyan, H.H.; Lee, J.H.; Ding, J.-R.; Kim, K.-S.; Manukyan, K.V.; Mukasyan, A.S. Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Prog. Energy Combust. Sci. 2017, 63, 79–118. [Google Scholar] [CrossRef]
- Bartuli, C.; Smith, R.W. Comparison between Ni-Cr-40vol%TiC wear-resistant plasma sprayed coatings produced from self-propagating high-temperature synthesis and plasma densified powders. J. Therm. Spray Technol. 1996, 5, 335–342. [Google Scholar] [CrossRef]
- Bartuli, C.; Smith, R.W.; Shtessel, E. SHS powders for thermal spray applications. Ceram. Int. 1997, 23, 61–68. [Google Scholar] [CrossRef]
- Kunrath, A.O.; Upadhaya, K.; Reimanis, I.E.; Moore, J.J. Synthesis and application of composite TiC-CnC2 targets. Surf. Coat. Technol. 1997, 94–95, 237–241. [Google Scholar] [CrossRef]
- Wang, B.-Q.; Verstak, A. Elevated temperature erosion of HVOF CnCi/TiC-NiCrMo cermet coating. Wear 1999, 233, 342–351. [Google Scholar] [CrossRef]
- Steinhauser, S.; Wielage, B.; Hofmann, U.; Schnick, T.; Ilyuschenko, A.; Azarova, T. Plasma- sprayed wear-resistant coatings with respect to ecological aspects. Surf. Coat. Technol. 2000, 131, 365–371. [Google Scholar] [CrossRef]
- Jones, M.; Horlock, A.J.; Shipway, P.H.; McCartney, D.G.; Wood, J.V. Microstructure and abrasive wear behavior of FeCr-TiC coatings deposited by HVOF spraying of SHS powders. Wear 2001, 249, 246–253. [Google Scholar] [CrossRef]
- Jones, M.; Horlock, A.J.; Shipway, P.H.; McCartney, D.G.; Wood, J.V. A comparison of the abrasive wear behaviour of HVOF sprayed titanium carbide and titanium boride-based cermet coatings. Wear 2001, 251, 1009–1016. [Google Scholar] [CrossRef]
- Horlock, A.J.; McCartney, D.G.; Shipway, P.H.; Wood, J.V. Thermally sprayed Ni(Cr)-TiB coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behavior. Mater. Sci. Eng. 2002, A336, 88–98. [Google Scholar] [CrossRef]
- Degnan, C.C.; Shipway, P.H. A comparison of the reciprocating sliding wear behavior of steel-based metal matrix composites processed from self-propagating high-temperature synthesized Fe-TiC and Fe-TiB2 master alloys. Wear 2002, 252, 9–10. [Google Scholar] [CrossRef]
- Licheri, R.; Orru, R.; Cao, G.; Crippa, A.; Scholz, R. Self-propagating combustion synthesis and plasma spraying deposition of TiC-Fe powders. Ceram. Int. 2003, 29, 519–526. [Google Scholar] [CrossRef]
- Licheri, R.; Orru, R.; Locci, A.M.; Cao, G. Combustion synthesis of TiC-metal composites and related plasma spraying deposition. Int. J. Mater. Prod. Technol. 2004, 20, 464–478. [Google Scholar] [CrossRef]
- Dercz, G.; Formanek, B.; Prusik, K.; Pajak, L. Microstructure of Ni(Cr)-TiC-CnC2-Cr7C3 composite powder. J. Mater. Process. Technol. 2005, 162–163, 15–19. [Google Scholar] [CrossRef]
- Borisova, A.L.; Borisov, Y.S. Self-propagating high-temperature synthesis for the deposition of thermal-sprayed coatings. Powder Metall. Met. Ceram. 2008, 47, 80–94. [Google Scholar] [CrossRef]
- Munir, Z.; Anselmi-Tamburini, V. Self-Propagating Exothermic Reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 1989, 3, 277–365. [Google Scholar] [CrossRef]
- Talako, T.; Ilyuschenko, A.; Letsko, A. (2009). SHS powders for thermal spray coating. KONA Powder Part. J. 2009, 27, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Kunrath, A.O.; Reimanis, I.E.; Moore, J.J. Microstructural evolution of titanium carbide-chromium carbide (TiC-Cr3C2) composites produced via combustion synthesis. J. Am. Ceram. Soc. 2004, 85, 1285–1290. [Google Scholar] [CrossRef]
- Jie-Cai, H.; Zhang, X.-H.; Wood, J. In-situ combustion synthesis and densification of TiC–xNi cermets. Mater. Sci. Eng. A 2000, 280, 328–333. [Google Scholar] [CrossRef]
- Zhang, W.N.; Wang, H.Y.; Yin, S.Q.; Jiang, Q.C. Effect Ti/C ratio on the SHS reaction of Cr–Ti–C system. Mater. Lett. 2007, 61, 3075–3078. [Google Scholar] [CrossRef]
- Vlasov, V.A.; Sharivker, S.Y.; Ponomarev, V.I.; Khomenko, N.Y.; Belikova, A.F.; Zakorzhevski, V.V. Annealing of Ti-Cr carbide produced by SHS. Int. J. SHS 1997, 6, 431–437. [Google Scholar]
- Seplyarsky, B.S.; Kochetkov, R.A.; Lisina, T.G.; Abzalov, N.I. The effect of synthesis conditions on phase composition and structure of combustion products of nickel-bonded titanium carbide. Adv. Mater. Technol. 2017, 4, 22–28. [Google Scholar] [CrossRef]
- Seplyarskii, B.S.; Kochetkov, R.A. Granulation as a tool for stabilization of SHS reactions. Int. J. SHS 2017, 26, 134–136. [Google Scholar] [CrossRef]
- Turchi, P.E.A.; Kaufman, L.; Liu, Z.-K. Modeling of Ni–Cr–Mo based alloys: Part I—phase stability. Calphad 2006, 30, 70–87. [Google Scholar] [CrossRef]
- Vyazovkin, S. On the phenomenon of variable activation energy for condensed phase reactions. New J. Chem. 2000, 24, 913–917. [Google Scholar] [CrossRef]
- Shuck, C.E.; Mukasyan, A.S. Reactive Ni/Al nanocomposites: Structural characteristics and activation energy. J. Phys. Chem. A 2017, 121, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, K.V.; Lin, Y.-C.; Rouvimov, S.; McGinn, P.J.; Mukasyan, A.S. Microstructure-reactivity relationship of Ti + C reactive nanomaterials. J. Appl. Phys. 2013, 113, 024302. [Google Scholar] [CrossRef]
- Borovinskaya, I.P.; Gromov, A.A.; Levashov, E.A.; Maksimov, Y.M.; Mukasyan, A.S.; Rogachev, A.S. Concise Encyclopedia of Self-Propagating High-Temperature Synthesis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 90–92. [Google Scholar]
- Rogachev, A.S. Combustion Wave Velocity and Temperature Profile. In Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products; Borovinskaya, I.P., Gromov, A.A., Levashov, E.A., Maksimov, Y.M., Mukasyan, A.S., Rogachev, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 79–81. [Google Scholar]
- Krishenik, P.M. Combustion Wave Propagation Velocity. In Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products; Borovinskaya, I.P., Gromov, A.A., Levashov, E.A., Maksimov, Y.M., Mukasyan, A.S., Rogachev, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 77–78. [Google Scholar]
- Shaboueia, M.; Subber, W.; Williams, C.W.; Matous, K.; Powers, J.M. Chemo-thermal model and Gaussian process emulator for combustion synthesis of Ni/Al composites. Combust. Flame 2019, 207, 153–170. [Google Scholar] [CrossRef]
- Lapshin, O.V.; Prokof’ev, V.G.; Smolyakov, V.K. Combustion of Granulated Gasless Mixtures in a Flow of Inert Gas. Int. J. Self-Propag. High-Temp Synth. 2018, 27, 14–17. [Google Scholar] [CrossRef]
- Seplyarskii, B.S.; Tarasov, A.G.; Kochetkov, R.A. Experimental investigation of combustion of a gasless pelletized mixture of Ti + 0.5C in argon and nitrogen coflows. Combust. Explos. Shock Waves 2013, 49, 555–562. [Google Scholar] [CrossRef]
- Tarasov, A.G.; Seplyarskii, B.S.; Barinov, Y.N.; Semenova, V.N. Self-purification effect in the synthesis of titanium carbonitride in a combustion regime. Mendeleev Commun. 2011, 21, 289–290. [Google Scholar] [CrossRef]
- Kostin, S.V.; Barzykin, V.V. Filtration-Diffusion Combustion Limit of a Titanium Powder in Nitrogen upon Degassing. Combust. Explos. Shock Waves 2001, 37, 297–302. [Google Scholar] [CrossRef]
- Mukas’yan, A.S.; Shugaev, V.A.; Kir’yakov, N.V. Effect of gaseous fluid phases on combustion of metals in nitrogen. Combust. Explos. Shock Waves 1993, 29, 7–11. [Google Scholar] [CrossRef]
- Cornea, N. Influence of the degree of carbonization and granulation of fuel on combustion process. Rev. Chim. 2010, 61, 869–871. [Google Scholar]
- Xiao, G.; Fan, Q.; Gu, M.; Wang, Z.; Jin, Z. Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of TiC Ni cermet. Mater. Sci. Eng. A 2004, 382, 132–140. [Google Scholar] [CrossRef]
- Taheri-Nassaj, E.; Mirhosseini, S.H. An in situ WC–Ni composite fabricated by the SHS method. J. Mater. Process. Technol. 2003, 142, 422–426. [Google Scholar] [CrossRef]
- Córdoba, J.M.; Alcalá, M.D.; Avilés, M.A.; Sayagués, M.J.; Gotor, F.J. New production of TiCxN1−x-based cermets by one step mechanically induced self-sustaining reaction: Powder synthesis and pressureless sintering. J. Eur. Ceram. Soc. 2008, 28, 2085–2098. [Google Scholar] [CrossRef]
- Boutefnouchet, H.; Curfs, C.; Triki, A.; Boutefnouchet, A.; Vrel, D. Self-propagating high-temperature synthesis mechanisms within the Ti–C–Ni system: A time-resolved X-ray diffraction study. Powder Technol. 2012, 217, 443–450. [Google Scholar] [CrossRef]
Denotation | Stoichiometry | Elemental Composition (wt.%) | |||
---|---|---|---|---|---|
C | Cr | C | Ni | ||
B1 | Ni | - | - | - | 100.0 |
B2 | 80%Ni/20%Cr | - | 20.0 | - | 80.0 |
B3 | 60%Ni/40%Cr | - | 40.0 | - | 60.0 |
M1 | 70%(Ti + C)/30%(3Cr + 2C) | 56.0 | 26.0 | 18.0 | - |
M2 | 80%M1 + 20%B1 | 44.8 | 20.8 | 14.4 | 20.0 |
M3 | 80%M1 + 20%B2 | 44.8 | 24.4 | 14.4 | 16.0 |
M4 | 80%M1 + 20%B3 | 44.8 | 28.2 | 14.4 | 12.0 |
M5 | 80%(Ti + C)/20%(3Cr + 2C) | 64.0 | 17.2 | 18.8 | - |
M6 | 80%M5 + 20%B1 | 51.2 | 13.8 | 15.0 | 20.0 |
M7 | 80%M5 + 20%B2 | 51.2 | 17.8 | 15.0 | 16.0 |
M8 | 80%M5 + 20%B3 | 51.2 | 21.8 | 15.0 | 12.0 |
Denotation | Gas permeability, Darcy | Tad, K | Tc, K | Uc, mm/s | |||
---|---|---|---|---|---|---|---|
Powdered | Granulated | Powdered | Granulated | Powdered | Granulated | ||
M1 | 2.4 | 24.2 | 2700 | 2240 | 2270 | 14 | 22 |
M2 | 2.2 | 26.3 | 2350 | 1820 | 1830 | 6 | 9 |
M3 | 2.8 | 25.7 | 2375 | 1850 | 1840 | 4 | 8 |
M4 | 3.5 | 27.9 | 2350 | 1860 | 1790 | 5 | 9 |
M5 | 3.1 | 28.0 | 2950 | 2380 | 2340 | 13 | 24 |
M6 | 2.8 | 25.2 | 2600 | 2140 | 2150 | 7 | 11 |
M7 | 2.3 | 26.8 | 2580 | 2120 | 2140 | 6 | 10 |
M8 | 2.7 | 27.1 | 2575 | 2180 | 2170 | 6 | 12 |
Mixture | Phase composition at Tad Calculated by Thermo | The Phase Composition of Combustion Products |
---|---|---|
M1 | TiC, Cr3C2 | (Ti,Cr)C, TiC |
M2 | TiC, Ni(liq), Cr3C2, Cr7C3 (minor) | (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2, |
M3 | TiC, Ni, Cr7C3, Cr3C2 | (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2, |
M4 | TiC, Ni, Cr7C3, Cr3C2 | (Ti,Cr)C, Ni2.88Cr1.12, Cr7C3, |
M5 | TiC, Cr3C2, C(minor) | (Ti,Cr)C |
M6 | TiC, Ni(liq), Cr3C2, C(minor) | (Ti,Cr)C, Ni2.88Cr1.12 |
M7 | TiC, Ni(liq), Cr3C2, Cr7C3 | (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2, |
M8 | TiC, Ni(liq), Cr7C3, Cr3C2 | (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2, |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorotilo, S.; Kiryukhantsev-Korneev, P.V.; Seplyarskii, B.S.; Kochetkov, R.A.; Abzalov, N.I.; Kovalev, I.D.; Lisina, T.G.; Zaitsev, A.A. (Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools. Crystals 2020, 10, 412. https://doi.org/10.3390/cryst10050412
Vorotilo S, Kiryukhantsev-Korneev PV, Seplyarskii BS, Kochetkov RA, Abzalov NI, Kovalev ID, Lisina TG, Zaitsev AA. (Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools. Crystals. 2020; 10(5):412. https://doi.org/10.3390/cryst10050412
Chicago/Turabian StyleVorotilo, Stepan, Philipp V. Kiryukhantsev-Korneev, Boris S. Seplyarskii, Roman A. Kochetkov, Nail I. Abzalov, Ivan D. Kovalev, Tatyana G. Lisina, and Alexander A. Zaitsev. 2020. "(Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools" Crystals 10, no. 5: 412. https://doi.org/10.3390/cryst10050412
APA StyleVorotilo, S., Kiryukhantsev-Korneev, P. V., Seplyarskii, B. S., Kochetkov, R. A., Abzalov, N. I., Kovalev, I. D., Lisina, T. G., & Zaitsev, A. A. (2020). (Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools. Crystals, 10(5), 412. https://doi.org/10.3390/cryst10050412