Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing
Abstract
:1. Introduction
2. Structure Design and Theory
2.1. Device Design
2.2. Theories
2.2.1. Optical Modes
2.2.2. Acoustic Modes
2.2.3. Sensitivity and Figure of Merit
3. Results and Discussions
3.1. Optical Behaviors
3.1.1. Perfect Modes of Photonic Crystal
3.1.2. Defect Modes of Photonic Crystal (with N = 0.04)
3.1.3. Gradient Cavity Optimization
3.2. Acoustic Behaviors
3.2.1. Perfect Modes of Phononic Crystal
3.2.2. Defect Modes of Phononic Crystal (with N = 0.04)
3.2.3. Sensing Performance for Phononic Device
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yablonovitch, E. Photonic crystals: Semiconductors of light. Sci. Am. 2001, 285, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.-J.; Huang, Z.-T.; Li, J.-H.; Chou, B.-T.; Chou, Y.-H.; Lo, W.-C.; Chen, K.-P.; Lu, T.-C.; Lin, T.-R. High-performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications. ACS Photonics 2018, 5, 2638–2644. [Google Scholar] [CrossRef]
- Song, Y.; Bai, J.; Zhang, R.; Wu, E.; Wang, J.; Li, S.; Ning, B.; Wang, M.; Gao, Z.; Peng, Y. LSPR-enhanced photonic crystal allows ultrasensitive and label-free detection of hazardous chemicals. Sens. Actuators B 2020, 310, 127671. [Google Scholar] [CrossRef]
- Li, T.; Gao, D.; Zhang, D.; Cassan, E. High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors. IEEE Photonics Technol. Lett. 2016, 28, 689–692. [Google Scholar] [CrossRef]
- Watanabe, T.; Saijo, Y.; Hasegawa, Y.; Watanabe, K.; Nishijima, Y.; Baba, T. Ion-sensitive photonic-crystal nanolaser sensors. Opt. Express 2017, 25, 24469–24479. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.A.; Markov, P.; Cartwright, A.P.; Choudhury, M.H.; Afzal, F.O.; Cao, T.; Halimi, S.I.; Retterer, S.T.; Kravchenko, I.I.; Weiss, S.M. Photonic crystal nanobeam biosensors based on porous silicon. Opt. Express 2019, 27, 9536–9549. [Google Scholar] [CrossRef] [PubMed]
- Lucklum, R.; Ke, M.; Zubtsov, M. Two-dimensional phononic crystal sensor based on a cavity mode. Sens. Actuators B 2012, 171–172, 271–277. [Google Scholar] [CrossRef]
- Oseev, A.; Mukhin, N.; Lucklum, R.; Zubtsov, M.; Schmidt, M.-P.; Steinmann, U.; Fomin, A.; Kozyrev, A.; Hirsch, S. Study of liquid resonances in solid-liquid composite periodic structures (phononic crystals)—Theoretical investigations and practical application for in-line analysis of conventional petroleum products. Sens. Actuators B 2018, 257, 469–477. [Google Scholar] [CrossRef]
- Amoudache, S.; Pennec, Y.; Rouhani, B.D.; Khater, A.; Lucklum, R.; Tigrine, R. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects. J. Appl. Phys. 2014, 115, 134503. [Google Scholar] [CrossRef]
- Amoudache, S.; Moiseyenko, R.; Pennec, Y.; Rouhani, B.D.; Khater, A.; Lucklum, R.; Tigrine, R. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate. J. Appl. Phys. 2016, 119, 114502. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.-X.; Wang, Y.-S.; Zhang, C.; Su, X.-X. Theoretical research on a two-dimensional phoxonic crystal liquid sensor by utilizing surface optical and acoustic waves. Sens. Actuator A Phys. 2016, 242, 123–131. [Google Scholar] [CrossRef]
- Wang, B.; Dündar, M.A.; Nötzel, R.; Karouta, F.; He, S.; van der Heijden, R.W. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing. Appl. Phys. Lett. 2010, 97, 151105. [Google Scholar] [CrossRef] [Green Version]
- Zain, A.R.M.; Johnson, N.P.; Sorel, M.; De la Rue, R.M. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express 2008, 16, 12084–12089. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-R.; Lin, C.-H.; Hsu, J.-C. Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves. Sci. Rep. 2015, 5, 13782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COMSOL Multiphysics®® Modeling Software. Available online: https://www.comsol.com/ (accessed on 13 April 2020).
- Almeida, V.R.; Xu, Q.; Barios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Zhou, T.; Wu, Q. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 2018, 18, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S. Optical dispersion relation for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs and In1−xGaxAsyP1−y. J. Appl. Phys. 1989, 66, 6030–6040. [Google Scholar] [CrossRef]
- Adachi, S. Physical Properties of III-V Semiconductor Compounds; Wiley: New York, NY, USA, 1992; pp. 11–23. [Google Scholar]
- Rosenbruch, K.J.; Emmerich, A. The refractometric determination of aqueous sugar solutions. Sugar Technol. Rev. 1988, 14, 137–205. [Google Scholar]
- Saggin, R.; Coupland, J.N. Concentration measurement by acoustic reflectance. J. Food Sci. 2001, 66, 681–685. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystal, 2nd ed.; Princeton University Press: New Jersey, NJ, USA, 2008; pp. 9–10. [Google Scholar]
- Royer, D.; Dieulesaint, E. Elastic Waves in Solids I: Free and Guided Propagation, 1st ed.; Springer: New York, NY, USA, 2000; p. 128. [Google Scholar]
- Monkola, S. Numerical Simulation of Fluid-Structure Interaction between Acoustic and Elastic Waves. Ph.D. Dissertation, University of Jyvaskyla, Jyvaskyla, Finland, 2011. [Google Scholar]
- Lin, T.-R.; Chang, S.-W.; Chuang, S.L.; Zhang, Z.; Schuck, P.J. Coating effect on optical resonance of plasmonic nanobowtie antenna. Appl. Phys. Lett. 2010, 97, 063106. [Google Scholar] [CrossRef]
Mode | ||
---|---|---|
A | 5.94% | 730 |
B | 5.58% | 721 |
C | 3.20% | 479 |
D | 3.59% | 563 |
Mode | FWHM(nm) | ||||||
---|---|---|---|---|---|---|---|
2 | 1472.1 | 1504.3 | 4.64 | 32.2 | 324 | 296 | 64 |
4 | 1572.0 | 1614.6 | 4.63 | 42.6 | 349 | 391 | 84 |
7 | 1640.9 | 1692.1 | 7.87 | 51.2 | 215 | 470 | 60 |
8 | 1701.8 | 1760.1 | 4.30 | 58.3 | 409 | 535 | 124 |
9 | 1746.5 | 1806.3 | 7.71 | 59.8 | 234 | 549 | 71 |
Mode | ||||
---|---|---|---|---|
A | 1.240 | 45.3 | 1.98 | |
B | 0.9567 | 44.0 | 411 | |
C | 0.7787 | 40.3 | 22.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.-N.; Chung, Y.-C.; Chiu, H.-T.; Hsu, J.-C.; Lin, Y.-F.; Kuo, C.-T.; Chang, Y.-W.; Chen, C.-Y.; Lin, T.-R. Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing. Crystals 2020, 10, 421. https://doi.org/10.3390/cryst10050421
Huang N-N, Chung Y-C, Chiu H-T, Hsu J-C, Lin Y-F, Kuo C-T, Chang Y-W, Chen C-Y, Lin T-R. Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing. Crystals. 2020; 10(5):421. https://doi.org/10.3390/cryst10050421
Chicago/Turabian StyleHuang, Nan-Nong, Yi-Cheng Chung, Hsiao-Ting Chiu, Jin-Chen Hsu, Yu-Feng Lin, Chien-Ting Kuo, Yu-Wen Chang, Chun-Yu Chen, and Tzy-Rong Lin. 2020. "Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing" Crystals 10, no. 5: 421. https://doi.org/10.3390/cryst10050421
APA StyleHuang, N. -N., Chung, Y. -C., Chiu, H. -T., Hsu, J. -C., Lin, Y. -F., Kuo, C. -T., Chang, Y. -W., Chen, C. -Y., & Lin, T. -R. (2020). Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing. Crystals, 10(5), 421. https://doi.org/10.3390/cryst10050421