Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Optical Properties at Room Temperature
3.3. Study on Variable Temperature SE
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nakamura, S.; Senoh, M.; Nagahama, S.-I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN-Based Laser Diodes With Modulation-Doped Strained-Layer Superlattices Grown on an Epitaxially Laterally Overgrown GaN Substrate. Appl. Phys. Lett. 1998, 72, 11–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.P.; Johnson, J.W.; Ren, F.; Han, J.; Polyakov, A.; Smirnov, N.B.; Govorkov, A.V.; Redwing, J.M.; Lee, K.; Pearton, S.J. Lateral AlxGa1−xN Power Rectifiers With 9.7 KV Reverse Breakdown Voltage. Appl. Phys. Lett. 2001, 78, 823–825. [Google Scholar] [CrossRef]
- Teisseyre, H.; Bockowski, M.; Grzegory, I.; Kozanecki, A.; Damilano, B.; Zhydachevskyy, Y.; Kunzer, M.; Holc, K.; Schwarz, U. GaN Doped With beryllium—An Effective Light Converter for White Light Emitting Diodes. Appl. Phys. Lett. 2013, 103, 11107. [Google Scholar] [CrossRef]
- Leute, R.A.R.; Wang, J.; Meisch, T.; Biskupek, J.; Kaiser, U.; Scholz, F. Blue to True Green LEDs With Semipolar Quantum Wells Based on GaN Nanostripes. Phys. Status Solidi c 2015, 12, 376–380. [Google Scholar] [CrossRef]
- Goldenberg, B.; Zook, J.D.; Ulmer, R.J. Ultraviolet and Violet Light-Emitting GaN Diodes Grown by Low-Pressure Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 1993, 62, 381–383. [Google Scholar] [CrossRef]
- Lin, M.E.; Greene, J.E.; Morkoç, H.; Xue, G.; Zhou, G.L. p-type zinc-Blende GaN on GaAs Substrates. Appl. Phys. Lett. 1993, 63, 932–933. [Google Scholar] [CrossRef]
- Wang, C.; Davis, R.F. Deposition of Highly Resistive, Undoped, and P-Type, Magnesium-Doped Gallium Nitride Films by Modified Gas Source Molecular Beam Epitaxy. Appl. Phys. Lett. 1993, 63, 990–992. [Google Scholar] [CrossRef]
- Kim, J.G.; Frenkel, A.C.; Liu, H.; Park, R.M. Growth by Molecular Beam Epitaxy and Electrical Characterization of Si-doped Zinc Blende GaN Films Deposited on β-SiC Coated (001) Si Substrates. Appl. Phys. Lett. 1994, 65, 91–93. [Google Scholar] [CrossRef]
- Molnar, R.J.; Moustakas, T.D. Growth of Gallium Nitride by Electron-Cyclotron Resonance Plasma-Assisted Molecular-Beam Epitaxy: The Role of Charged Species. J. Appl. Phys. 1994, 76, 4587–4595. [Google Scholar] [CrossRef]
- Rubin, M.; Newman, N.; Chan, J.S.; Fu, T.C.; Ross, J.T. P-Type Gallium Nitride by Reactive Ion-Beam Molecular Beam Epitaxy With Ion Implantation, Diffusion, or Coevaporation of Mg. Appl. Phys. Lett. 1994, 64, 64–66. [Google Scholar] [CrossRef]
- Abernathy, C.R.; MacKenzie, J.D.; Pearton, S.J.; Hobson, W.S. CCl4 Doping of GaN Grown by Metalorganic Molecular Beam Epitaxy. Appl. Phys. Lett. 1995, 66, 1969–1971. [Google Scholar] [CrossRef]
- Lisker, M.; Witte, H.; Krtschil, A.; Christen, J.; As, D.J.; Schöttker, B.; Lischka, K. Enhancement of UV-Sensitivity in GaN/GaAs Heterostructures by Si-Doping. Mater. Sci. Forum 2000, 338, 1591–1594. [Google Scholar] [CrossRef]
- Pankove, J.I.; Hutchby, J.A. Photoluminescence of ion-implanted GaN. J. Appl. Phys. 1976, 47, 5387–5390. [Google Scholar] [CrossRef]
- Tanaka, T.; Watanabe, A.; Amano, H.; Kobayashi, Y.; Akasaki, I.; Yamazaki, S.; Koike, M. p-type Conduction in Mg-doped GaN and Al0.08Ga0.92N Grown by Metalorganic Vapor Phase Epitaxy. Appl. Phys. Lett. 1994, 65, 593–594. [Google Scholar] [CrossRef]
- Johnson, C.; Lin, J.Y.; Jiang, H.X.; Khan, M.A.; Sun, C.J. Metastability and Persistent Photoconductivity in Mg-doped p-type GaN. Appl. Phys. Lett. 1996, 68, 1808–1810. [Google Scholar] [CrossRef]
- Seghier, D.; Gislason, H.P. Electrical Characterization of Mg-Related Energy Levels and the Compensation Mechanism in GaN:Mg. J. Appl. Phys. 2000, 88, 6483–6487. [Google Scholar] [CrossRef]
- Albrecht, F.; Grillenberger, J.; Dietrich, M.; Reislöhner, U.; Hülsen, C.; Pasold, G.; Witthuhn, W.; the ISOLDE collaboration. Observation of a Be-Correlated Donor State in GaN. Appl. Phys. Lett. 2004, 84, 3876. [Google Scholar] [CrossRef]
- Tan, H.H.; Williams, J.; Zou, J.; Cockayne, D.J.H.; Pearton, S.J.; Zolper, J.C.; Stall, R.A. Annealing of Ion Implanted Gallium Nitride. Appl. Phys. Lett. 1998, 72, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Kent, D.G.; Overberg, M.E.; Pearton, S.J. Co-Implantation of Be+O and Mg+O into GaN. J. Appl. Phys. 2001, 90, 3750–3753. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Bosin, A. Theoretical Evidence for Efficient P-Type Doping of GaN Using Beryllium. Appl. Phys. Lett. 1997, 70, 2990–2992. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Jimbo, T. Electrical Characterization of Acceptor Levels in Be-Implanted GaN. Appl. Phys. Lett. 2002, 81, 3990–3992. [Google Scholar] [CrossRef]
- Lyons, J.L.; Janotti, A.; Van De Walle, C.G. Impact of Group-II Acceptors on the Electrical and Optical Properties of GaN. Jpn. J. Appl. Phys. 2013, 52, 8. [Google Scholar] [CrossRef]
- Tuomisto, F.; Prozheeva, V.; Makkonen, I.; Myers, T.H.; Bockowski, M.; Teisseyre, H. Amphoteric Be in GaN: Experimental Evidence for Switching Between Substitutional and Interstitial Lattice Sites. Phys. Rev. Lett. 2017, 119, 196404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronning, C.; Carlson, E.P.; Thomson, D.B.; Davis, R.F. Optical Activation of Be Implanted into GaN. Appl. Phys. Lett. 1998, 73, 1622–1624. [Google Scholar] [CrossRef]
- Wang, H.T.; Tan, L.S.; Chor, E.F. Pulsed Laser Annealing of Be-Implanted GaN. J. Appl. Phys. 2005, 98, 094901. [Google Scholar] [CrossRef]
- Dewsnip, D.J.; Aндрианов, A.; Harrison, I.; Orton, J.; E Lacklison, D.; Ren, G.B.; E Hooper, S.; Cheng, T.S.; Foxon, C. Photoluminescence of MBE Grown Wurtzite Be-Doped GaN. Semicond. Sci. Technol. 1998, 13, 500–504. [Google Scholar] [CrossRef]
- Sanchez, F.J.; Calle, F.; Garcia, M.A.S.; Calleja, E.; Muñoz, E.; Molloy, C.H.; Somerford, D.J.; Koschnick, F.K.; Michael, K.; Spaeth, J.-M. Luminescence of Be-Doped GaN Layers Grown by Molecular Beam Epitaxy on Si (111). MRS Internet J. Nitride Semicond. Res. 1998, 3, e19. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; A Hirata, G.; Contreras, O.; Barboza-Flores, M. Photoluminescence Enhancement from GaN by Beryllium Doping. Opt. Mater. 2016, 60, 398–403. [Google Scholar] [CrossRef]
- Alfieri, G.; Sundaramoorthy, V.K. Minority Carrier Traps in Ion-Implanted n-Type Homoepitaxial GaN. Phys. Status Solidi b 2020, 257. [Google Scholar] [CrossRef]
- Alfieri, G.; Sundaramoorthy, V.K. Deep Level Study of Beryllium Implanted MOCVD Homoepitaxial GaN. Jpn. J. Appl. Phys. 2019, 58, SCCB04. [Google Scholar] [CrossRef]
- Bockowski, M.; Fijalkowski, M.; Sochacki, T.; Amilusik, M.; Lucznik, B.; Iwinska, M.; Sidor, A.; Kamler, G.; Oklej, M.; Jakiela, R.; et al. Implantation of Beryllium into Thin Unintentionally Doped Layers of Gallium Nitride Crystallized by Halide Vapor Phase Epitaxy (Conference Presentation). Gallium Nitride Mater. Devices XIV 2019, 10918, 1091805. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Group-IV, III-V and II-VI Semiconductors; Wiley: Chichester, UK, 2005; pp. 753–754. [Google Scholar] [CrossRef]
- Motamedi, P.; Cadien, K. Structural and Optical Characterization of Low-Temperature ALD Crystalline AlN. J. Cryst. Growth 2015, 421, 45–52. [Google Scholar] [CrossRef]
- Herzinger, C.M.; Johs, B.; McGahan, W.A.; Woollam, J.A.; Paulson, W. Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation. J. Appl. Phys. 1998, 83, 3323–3336. [Google Scholar] [CrossRef]
- Kucheyev, S.; Williams, J.; Zou, J.; Jagadish, C.; Li, G. Ion-Beam-Induced Dissociation and Bubble Formation in GaN. Appl. Phys. Lett. 2000, 77, 3577–3579. [Google Scholar] [CrossRef] [Green Version]
- Kucheyev, S.; Williams, J.; Zou, J.; Jagadish, C.; Li, G. High-Dose Ion Implantation into GaN. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 175, 214–218. [Google Scholar] [CrossRef]
- Manifacier, J.C.; Gasiot, J.; Fillard, J.P. A Simple Method for the Determination of the Optical Constants N, K and the Thickness of a Weakly Absorbing Thin Film. J. Phys. E Sci. Instrum. 1976, 9, 1002–1004. [Google Scholar] [CrossRef]
- Kawashima, T.; Yoshikawa, H.; Adachi, S.; Fuke, S.; Ohtsuka, K. Optical Properties of Hexagonal GaN. J. Appl. Phys. 1997, 82, 3528–3535. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Li, E.H. Modeling the Optical Constants of Hexagonal GaN, InN, and AlN. J. Appl. Phys. 1999, 85, 2848–2853. [Google Scholar] [CrossRef] [Green Version]
- Benedict, L.; Wethkamp, T.; Wilmers, K.; Cobet, C.; Esser, N.; Shirley, E.L.; Richter, W.; Cardona, M. Dielectric Function of Wurtzite GaN and AlN Thin Films. Solid State Commun. 1999, 112, 129–133. [Google Scholar] [CrossRef]
- Yan, C.H.; Yao, H.; Van Hove, J.M.; Wowchak, A.M.; Chow, P.P.; Zavada, J.M. Ordinary Optical Dielectric Functions of Anisotropic Hexagonal GaN Film Determined by Variable Angle Spectroscopic Ellipsometry. J. Appl. Phys. 2000, 88, 3463–3469. [Google Scholar] [CrossRef]
- Fujiwara, H. Introduction to Spectroscopic Ellipsometry; Wiley: Chichester, UK, 2007; pp. 1–11. [Google Scholar] [CrossRef]
- Sohal, S.; Feng, W.; Pandikunta, M.; Kuryatkov, V.V.; Nikishin, S.; Holtz, M. Influence of Phonons on the Temperature Dependence of the Band Gap of AlN and AlxGa1−xN Alloys With High AlN Mole Fraction. J. Appl. Phys. 2013, 113, 43501. [Google Scholar] [CrossRef]
- Liu, X.; Li, B. IR Variable Angle Spectroscopic Ellipsometry Study of High Dose Ion-Implanted and Annealed Silicon Wafers. J. Appl. Phys. 2009, 105, 13533. [Google Scholar] [CrossRef]
- Kucheyev, S.; Williams, J.; Pearton, S.J. Ion Implantation into GaN. Mater. Sci. Eng. R Rep. 2001, 33, 51–108. [Google Scholar] [CrossRef]
- Varshni, Y. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Choi, S.; Kim, T.; Hwang, S.; Li, J.; Persson, C.; Kim, Y.; Wei, S.-H.; Repins, I. Temperature Dependent Band-Gap Energy for Cu2ZnSnSe4: A Spectroscopic Ellipsometric Study. Sol. Energy Mater. Sol. Cells 2014, 130, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Q.X.; Wan, L.Y.; Kucukgok, B.; Ghafari, E.; Ferguson, I.T.; Zhang, X.; Wang, S.; Feng, Z.C.; Lu, N. Composition and Temperature Dependent Optical Properties of AlxGa1-XN Alloy by Spectroscopic Ellipsometry. Appl. Surf. Sci. 2017, 421, 389–396. [Google Scholar] [CrossRef]
Sample | GaN Layer/nm | Implanted Layer/nm | Surface Roughness/nm |
---|---|---|---|
0# | 1986.74 ± 2.26 | 148.37 ± 1.32 | 9.01 ± 0.11 |
1# | 1978.67 ± 0.51 | 80.69 ± 0.47 | 47.50 ± 0.09 |
2# | 1988.59 ± 1.12 | 84.22 ± 0.94 | 51.97 ± 0.24 |
3# | 1997.18 ± 0.37 | 96.43 ± 0.35 | 41.40 ± 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Wang, J.; Liu, Y.; Peng, Y.; Maraj, M.; Peng, B.; Wang, Y.; Sun, W. Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry. Crystals 2020, 10, 439. https://doi.org/10.3390/cryst10060439
Wei W, Wang J, Liu Y, Peng Y, Maraj M, Peng B, Wang Y, Sun W. Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry. Crystals. 2020; 10(6):439. https://doi.org/10.3390/cryst10060439
Chicago/Turabian StyleWei, Wenwang, Jiabin Wang, Yao Liu, Yi Peng, Mudassar Maraj, Biaolin Peng, Yukun Wang, and Wenhong Sun. 2020. "Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry" Crystals 10, no. 6: 439. https://doi.org/10.3390/cryst10060439
APA StyleWei, W., Wang, J., Liu, Y., Peng, Y., Maraj, M., Peng, B., Wang, Y., & Sun, W. (2020). Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry. Crystals, 10(6), 439. https://doi.org/10.3390/cryst10060439