Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TiO2-MoO3 Composite Systems
2.3. Characterization of Obtained Materials
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Crystalline Structure
3.2. Morphology
3.3. Parameters of the Porous Structure
3.4. Charging/Discharging Tests
3.5. Cyclic Voltammetry and Impedance Spectroscopy Tests
3.6. Surface Composition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gratz, E.; Sa, Q.; Apelian, D.; Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 2014, 262, 255–262. [Google Scholar] [CrossRef]
- Scrosati, B.; Abraham, K.M.; Van Schalkwijk, A.; Hassoun, J. Lithium batteries: From early stages to the future. In Lithium Batteries: Advanced Technologies and Applications; Wiley: Hoboken, NJ, USA, 2013; pp. 21–38. [Google Scholar]
- Vincent, C.A. Lithium batteries: A 50-year perspective, 1959–2009. Solid State Ion. 2000, 134, 159–167. [Google Scholar] [CrossRef]
- Tan, G.; Wu, F.; Zhan, C.; Wang, J.; Mu, D.; Lu, J.; Amine, K. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Lett. 2016, 16, 1960–1968. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Favre, C.; Bosteels, D.; May, J. Exhaust Emissions from European Market-Available Passenger Cars Evaluated on Various Drive Cycles. SAE Tech. Pap. Ser. 2013. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shen, W.; Vo, T.T.; Cao, Z.; Kapoor, A. An overview of lithium-ion batteries for electric vehicles. In Proceedings of the 10th International Power & Energy Conference (IPEC); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 230–235. [Google Scholar]
- Doughty, D.H.; Roth, E.P. A General Discussion of Li Ion Battery Safety. Electrochem. Soc. Interface 2012, 21, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, J.B. Changing Outlook for Rechargeable Batteries. ACS Catal. 2017, 7, 1132–1135. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-Y.; Liu, Z.; Nam, K.-W.; Borkiewicz, O.J.; Cheng, J.; Hua, X.; Dunstan, M.T.; Yu, X.; Wiaderek, K.M.; Du, L.-S.; et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kurc, B. Preparation and application of a titanium dioxide/graphene oxide anode material for lithium–ion batteries. J. Power Sources 2015, 299, 286–292. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, L.; Pan, H.; Lu, X.; Gu, L.; Hu, Y.-S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L.; et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEvoy, T.M.; Stevenson, K.J.; Hupp, J.T.; Dang, X. Electrochemical Preparation of Molybdenum Trioxide Thin Films: Effect of Sintering on Electrochromic and Electroinsertion Properties. Langmuir 2003, 19, 4316–4326. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Mei, L.; Zhang, Z.; Cui, C.; Liu, H.-K.; Ma, J.; Dou, S. Electrospinning of crystalline MoO3@C nanofibers for high-rate lithium storage. J. Mater. Chem. A 2015, 3, 3257–3260. [Google Scholar] [CrossRef]
- Chen, J.S.; Cheah, Y.L.; Madhavi, S.; Lou, X.W. (David) Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. J. Phys. Chem. C 2010, 114, 8675–8678. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties. Chem. Mater. 2009, 21, 5681–5690. [Google Scholar] [CrossRef]
- Hu, Y.-S.; Kienle, L.; Guo, Y.; Maier, J. High Lithium Electroactivity of Nanometer-Sized Rutile TiO2. Adv. Mater. 2006, 18, 1421–1426. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Abel, P.R.; Flaherty, D.W.; Wu, J.; Stevenson, K.J.; Heller, A.; Mullins, C.B. Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2 Electrodes. J. Phys. Chem. C 2010, 115, 2585–2591. [Google Scholar] [CrossRef]
- Wagemaker, M.; Kentgens, A.P.M.; Mulder, F.M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418, 397–399. [Google Scholar] [CrossRef]
- Wagemaker, M.; Simon, D.R.; Kelder, E.M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Lützenkirchen-Hecht, D.; Frahm, R.; Mulder, F.M. A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12. Adv. Mater. 2006, 18, 3169–3173. [Google Scholar] [CrossRef]
- Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9853–9889. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Wang, H.; Zuo, W.; Li, Y.; Liu, J. Fabrication and Shell Optimization of Synergistic TiO2-MoO3 Core-Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 3524–3533. [Google Scholar] [CrossRef]
- Xie, S.; Yao, T.; Wang, J.; Alsulami, H.; Kutbi, M.A.; Wang, H. Coaxially Integrating TiO2/MoO3 into Carbon Nanofibers via Electrospinning towards Enhanced Lithium Ion Storage Performance. ChemistrySelect 2020, 5, 3225–3233. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Li, W.; Ji, S.; Jin, P. One-Step Hydrothermal Synthesis of TiO2@MoO3 Core–Shell Nanomaterial: Microstructure, Growth Mechanism, and Improved Photochromic Property. J. Phys. Chem. C 2016, 120, 3341–3349. [Google Scholar] [CrossRef]
- Liu, H.; Lv, T.; Zhu, C.; Zhu, Z. Direct bandgap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity. Sol. Energy Mater. Sol. Cells 2016, 153, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Huang, X.; Pidko, E.; Hensen, E.J. MoO3–TiO2 synergy in oxidative dehydrogenation of lactic acid to pyruvic acid. Green Chem. 2017, 19, 3014–3022. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Jamwal, D.; Rana, D.; Katoch, A. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Cambridge, UK, 2018; pp. 619–632. [Google Scholar]
- Roberts, B.A.; Strauss, C.R. Toward Rapid, “Green”, Predictable Microwave-Assisted Synthesis. Chem. Inf. 2005, 36, 653–661. [Google Scholar] [CrossRef]
- Priecel, P.; Lopez-Sanchez, J.A. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals. ACS Sustain. Chem. Eng. 2018, 7, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov. 2005, 5, 51–63. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Conner, W.C.; Yngvesson, K.S. Microwave Synthesis of Nanoporous Materials. Chem. Phys. Chem. 2006, 7, 296–319. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Bhattacharya, S. Size effect on the lattice parameters of nanocrystalline anatase. Appl. Phys. Lett. 2009, 95, 191906. [Google Scholar] [CrossRef]
- Lunk, H.-J.; Hartl, H.; Hartl, M.; Fait, M.J.G.; Shenderovich, I.G.; Feist, M.; Frisk, T.A.; Daemen, L.L.; Mauder, D.; Eckelt, R.; et al. “Hexagonal Molybdenum Trioxide”—Known for 100 Years and Still a Fount of New Discoveries. Inorg. Chem. 2010, 49, 9400–9408. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.; Vinu, R.; Shivashankar, S.A.; Madras, G. Microwave Assisted Synthesis of Nanostructured Titanium Dioxide with High Photocatalytic Activity. Ind. Eng. Chem. Res. 2010, 49, 9636–9643. [Google Scholar] [CrossRef]
- Suprabha, T.; Roy, H.G.; Thomas, J.; Kumar, K.P.; Mathew, S. Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation. Nanoscale Res. Lett. 2008, 4, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, G.S.; Schmidt, C.; Ottmann, A.; Mijowska, E.; Klingeler, R. Microwave-assisted hydrothermal synthesis and electrochemical studies of α- and h-MoO3. J. Solid State Electrochem. 2018, 22, 3651–3661. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, J.; Liang, Y.; Guan, Z.-C.; Zhang, H.; Wang, H.-P.; Du, R.-G. Preparation of MoO3/TiO2 Composite Films and Their Application in Photoelectrochemical Anticorrosion. J. Electrochem. Soc. 2016, 163, C539–C544. [Google Scholar] [CrossRef]
- Kokorin, A.I.; Sviridova, T.V.; Kolbanev, I.V.; Sadovskaya, L.Y.; Degtyarev, E.N.; Vorobieva, G.; Streletskii, A.N.; Sviridov, D.V. Structure and Photocatalytic Properties of TiO2/MoO3 and TiO2/V2O5 Nanocomposites Obtained by Mechanochemical Activation. Russ. J. Phys. Chem. B 2018, 12, 330–335. [Google Scholar] [CrossRef]
- Sivaranjani, V.; Deepa, P.; Philominathan, P. Thin Films of TiO2-MoO3 binary oxides obtained by an economically viable and simplified spray pyrolysis technique for gas sensing application. Int. J. Thin. Fil. Sci. Tec. 2015, 4, 125–131. [Google Scholar]
- Silvestri, S.; Kubaski, E.; Sequinel, T.; Pianaro, S.A.; Varela, J.A.; Tebcherani, S.M. Optical Properties of the MoO3-TiO2 Particulate System and Its Use as a Ceramic Pigment. Part. Sci. Technol. 2013, 31, 466–473. [Google Scholar] [CrossRef]
- Sviridova, T.; Sadovskaya, L.; Shchukina, E.; Logvinovich, A.; Shchukin, D.; Sviridov, D. Nanoengineered thin-film TiO2/h-MoO3 photocatalysts capable to accumulate photoinduced charge. J. Photochem. Photobiol. A Chem. 2016, 327, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, U.; Eror, N. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Yang, X.; Ding, H.; Zhang, D.; Yan, X.; Lu, C.; Qin, J.; Zhang, R.; Tang, H.; Song, H. Hydrothermal synthesis of MoO3 nanobelt-graphene composites. Cryst. Res. Technol. 2011, 46, 1195–1201. [Google Scholar] [CrossRef]
- Zhang, C.C.; Zheng, L.; Zhang, Z.M.; Dai, R.C.; Wang, Z.P.; Zhang, J.W.; Ding, Z.J. Raman studies of hexagonal MoO3 at high pressure. Phys. Status Solidi B 2011, 248, 1119–1122. [Google Scholar] [CrossRef]
- Siwińska-Ciesielczyk, K.; Zdarta, J.; Paukszta, D.; Jesionowski, T. The influence of addition of a catalyst and chelating agent on the properties of titanium dioxide synthesized via the sol–gel method. J. Sol.-Gel Sci. Technol. 2015, 75, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Siwińska-Stefańska, K.; Paukszta, D.; Piasecki, A.; Jesionowski, T. Synthesis and physicochemical characteristics of titanium dioxide doped with selected metals. Physicochem Probl. Miner. Process. 2014, 50, 265–276. [Google Scholar] [CrossRef]
- Kubiak, A.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials 2018, 11, 2295. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhao, Y.; Huang, Z.; Zhao, J. Aqueous synthesis of molybdenum trioxide (h-MoO3, α-MoO3·H2O and h-/α-MoO3 composites) and their photochromic properties study. J. Alloys Compd. 2017, 693, 1290–1296. [Google Scholar] [CrossRef]
- Jiao, L.; Yuan, H.; Si, Y.; Wang, Y.; Zhao, M.; Wang, Y. A novel method for synthesis of microstructure MoO3. Mater. Lett. 2005, 59, 3112–3114. [Google Scholar] [CrossRef]
- Chithambararaj, A.; N, R.Y.; Bose, A.C. Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport. Cryst. Growth Des. 2016, 16, 1984–1995. [Google Scholar] [CrossRef]
- Agarwala, S.; Ho, G. Synthesis and tuning of ordering and crystallinity of mesoporous titanium dioxide film. Mater. Lett. 2009, 63, 1624–1627. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J. Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2. Appl. Surf. Sci. 2015, 355, 959–968. [Google Scholar] [CrossRef]
- Marien, C.B.D.; Marchal, C.; Robert, D.; Drogui, P.; Koch, A. Sol-gel synthesis of TiO2 nanoparticles: Effect of Pluronic P123 on particle’s morphology and photocatalytic degradation of paraquat. Environ. Sci. Pollut. Res. 2016, 24, 12582–12588. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z. Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance. Superlattices Microstruct. 2013, 63, 47–57. [Google Scholar] [CrossRef]
- Tang, G.; Wang, Y.; Chen, W.; Tang, H.; Li, C. Hydrothermal synthesis and characterization of novel flowerlike MoS2 hollow microspheres. Mater. Lett. 2013, 100, 15–18. [Google Scholar] [CrossRef]
- Pérez, U.M.G.; La Cruz, A.M.-D.; Sepulveda-Guzman, S.; Peral, J. Low-temperature synthesis of BiVO4 powders by Pluronic-assisted hydrothermal method: Effect of the surfactant and temperature on the morphology and structural control. Ceram. Int. 2014, 40, 4631–4638. [Google Scholar] [CrossRef]
- Chithambararaj, A.; Bose, A.C. Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J. Alloys Compd. 2011, 509, 8105–8110. [Google Scholar] [CrossRef]
- Qin, S.; Xin, F.; Liu, Y.; Yin, X.; Ma, W. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J. Colloid Interface Sci. 2011, 356, 257–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Xu, H.; Shen, K.; Zhou, C.; Jin, B.; Sun, K. Novel ultrasonic–modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia. J. Colloid Interface Sci. 2011, 361, 212–218. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Drunka, R.; Grabis, J.; Krumina, A. Microwave Assisted Synthesis, Modification With Platinum And Photocatalytical Properties of TiO2 Nanofibers. Mater. Sci. 2016, 22, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Falk, G.; Borlaf, M.; López-Muñoz, M.J.; Fariñas, J.C.; Neto, J.B.R.; Moreno, R. Microwave-assisted synthesis of TiO2 nanoparticles: Photocatalytic activity of powders and thin films. J. Nanoparticle Res. 2018, 20, 23. [Google Scholar] [CrossRef]
- Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W. Effects of precipitation temperature on the photochromic properties of h-MoO3. Ceram. Int. 2014, 40, 13487–13495. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, Y.; Li, Z. The dual-wavelength excitation photochromic behavior of organic induced MoO3 powders synthesized via a hydrothermal route. Powder Technol. 2015, 279, 233–239. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Shi, K.; Chen, S.; Yang, Z.; Lü, X. Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method. Catal. Lett. 2012, 142, 480–485. [Google Scholar] [CrossRef]
- Chary, K.V.R.; Bhaskar, T.; Kishan, G.; Vijayakumar, V. Characterization of MoO3/TiO2 (anatase) catalysts by ESR, 1H MAS NMR and oxygen chemisorption. J. Phys. Chem. B. 1998, 102, 3936–3940. [Google Scholar] [CrossRef]
- Lu, X.; Gu, L.; Hu, Y.-S.; Chiu, H.; Li, H.; Demopoulos, G.P.P.; Chen, L. New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li4Ti5O12 Anode. J. Am. Chem. Soc. 2015, 137, 1581–1586. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, H.; Liang, P.; Liu, K.; Cai, M.; Huang, Z.; Wang, C.-A.; Zhong, M. A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation. J. Power Sources 2018, 378, 362–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, H.; Ma, H.; Du, S.; Li, T.; Zhang, Y.; Li, J.; Yang, X.-L. Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage. Electrochim. Acta 2018, 283, 619–627. [Google Scholar] [CrossRef]
- Xu, Y.; Yi, R.; Yuan, B.; Wu, X.; Dunwell, M.; Lin, Q.; Fei, L.; Deng, S.; Andersen, P.; Wang, D.; et al. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries. J. Phys. Chem. Lett. 2012, 3, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Peng, C.X.; Nai, C.T.; Su, J.; Liu, Y.P.; Reddy, M.V.V.; Lin, M.; Loh, K.P. Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts. Small 2015, 11, 2446–2453. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, C.; Shao, M.; Deng, X.; Xu, X. MoO2 nanoparticles grown on carbon fibers as anode materials for lithium-ion batteries. Ceram. Int. 2017, 43, 760–765. [Google Scholar] [CrossRef]
- Liu, H.; Hu, H.; Wang, J.; Niehoff, P.; He, X.; Paillard, E.; Eder, D.; Winter, M.; Li, J. Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Materials for High-Performance Lithium-Ion Storage. ChemElectroChem 2016, 3, 922–932. [Google Scholar] [CrossRef]
- Bhaskar, A.; Deepa, M.; Rao, T.N. MoO2/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode. ACS Appl. Mater. Interfaces 2013, 5, 2555–2566. [Google Scholar] [CrossRef] [PubMed]
- Gaoa, Q.; Yang, L.; Lu, X.; Mao, J.; Zhang, Y.; Wu, Y.; Tang, Y. Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. J. Mater. Chem. 2010, 20, 2807. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Liu, Y.; Li, Y.; Qi, Y. Preparation of MoO2 nanoparticles/rGO nanocomposites and their high electrochemical properties for lithium ion batteries. J. Mater. Sci. Mater. Electron. 2016, 28, 1740–1749. [Google Scholar] [CrossRef]
- Tao, T.; Glushenkov, A.M.; Zhang, C.; Zhang, H.; Zhou, D.; Guo, Z.; Liu, H.-K.; Chen, Q.; Hu, H.; Chen, Y. MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries. J. Mater. Chem. 2011, 21, 9350. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano 2011, 5, 7100–7107. [Google Scholar] [CrossRef]
- Guo, B.; Fang, X.; Li, B.; Shi, Y.; Ouyang, C.; Hu, Y.-S.; Wang, Z.; Stucky, G.D.; Chen, L. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods. Chem. Mater. 2012, 24, 457–463. [Google Scholar] [CrossRef]
- Wang, Z.; Madhavi, S.; Lou, X.W. (David) Ultralong α-MoO3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. J. Phys. Chem. C 2012, 116, 12508–12513. [Google Scholar] [CrossRef]
- Koziej, D.; Ludi, B.; Niederberger, M.; Rossell, M.D.D.; Hintennach, A.; Novák, P.; Grunwaldt, J.-D. Interplay Between Size and Crystal Structure of Molybdenum Dioxide Nanoparticles-Synthesis, Growth Mechanism, and Electrochemical Performance. Small 2010, 7, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.V.S.; Deng, Z.; Zhu, Q.; Dai, Y.; Zhou, J.; Chen, W.; Mho, S.-I. Characterization of MoO3 nanobelt cathode for Li-battery applications. Appl. Phys. A 2007, 89, 995–999. [Google Scholar] [CrossRef]
- Lim, E.; Shim, H.; Fleischmann, S.; Presser, V. Fast and stable lithium-ion storage kinetics of anatase titanium dioxide/carbon onion hybrid electrodes. J. Mater. Chem. A 2018, 6, 9480–9488. [Google Scholar] [CrossRef]
- Huang, J.; Yan, J.; Li, J.; Cao, L.; Xu, Z.; Wu, J.; Zhou, L.; Luo, Y. Assembled-sheets-like MoO3 anodes with excellent electrochemical performance in Li-ion battery. J. Alloys Compd. 2016, 688, 588–595. [Google Scholar] [CrossRef]
- Dolat, D.; Moszyński, D.; Guskos, N.; Ohtani, B.; Morawski, A.W. Preparation of photoactive nitrogen-doped rutile. Appl. Surf. Sci. 2013, 266, 410–419. [Google Scholar] [CrossRef]
- Al-Kandari, S.; Al-Kandari, H.; Mohamed, A.; Al-Kharafi, F.; Katrib, A. Tailoring acid–metal functions in molybdenum oxides: Catalytic and XPS-UPS, ISS characterization study. Appl. Catal. A Gen. 2014, 475, 497–502. [Google Scholar] [CrossRef]
- Dong, W.J.; Ham, J.; Jung, G.H.; Son, J.H.; Lee, J.-L. Ultrafast laser-assisted synthesis of hydrogenated molybdenum oxides for flexible organic solar cells. J. Mater. Chem. A 2016, 4, 4755–4762. [Google Scholar] [CrossRef] [Green Version]
- Self, E.C.; Zhang, Y.; Kercher, A.K.; Phillip, N.D.; Delnick, F.M.; Nanda, J. Structural and Electrochemical Characterization of Thin Film Li2MoO3 Electrodes. J. Electrochem. Soc. 2019, 166, A1015–A1021. [Google Scholar] [CrossRef]
- Dolat, D.; Mozia, S.; Wróbel, R.; Moszyński, D.; Ohtani, B.; Guskos, N.; Morawski, A.W. Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B Environ. 2015, 162, 310–318. [Google Scholar] [CrossRef]
- Jirsak, T.; Kuhn, M.; A Rodríguez, J. Chemistry of NO2 on Mo(110): Decomposition reactions and formation of MoO2. Surf. Sci. 2000, 457, 254–266. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.E.; Sobol, P.E.; Bomben, K.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Tanaka, S.; Taniguchi, M.; Tanigawa, H. XPS and UPS studies on electronic structure of Li2O. J. Nucl. Mater. 2000, 283, 1405–1408. [Google Scholar] [CrossRef]
Sample | (NH4)6Mo7O24 (g) | Pluronic® P123 (g) | TiO2 (g) |
---|---|---|---|
Ti8Mo2 | 2.5 | 2 | 4.50 |
Ti5Mo5 | 1.12 | ||
Ti2Mo8 | 0.28 |
Sample | TiO2 | Ti8Mo2 | Ti5Mo5 | Ti2Mo8 | MoO3 | ||
---|---|---|---|---|---|---|---|
Lattice Parameter | anatase | a (Å) | 3.7959(9) | 3.7892(3) | 3.789(1) | 3.787(3) | – |
c (Å) | 9.502(2) | 9.503(1) | 9.504(5) | 9.516(18) | – | ||
h-MoO3 | a (Å) | – | 10.5918(6) | 10.578(1) | 10.5813(8) | 10.5717(6) | |
c (Å) | – | 3.7263(3) | 3.7267(5) | 3.7279(3) | 3.7286(7) | ||
Composition (% wt.) | anatase | 100 | 77(1) | 63(1) | 90(2) | – | |
h-MoO3 | – | 23(1) | 37(1) | 10(1) | 100 | ||
D (nm) | anatase | 22 | 10 | 13 | 8 | – | |
h-MoO3 | – | 81 | 92 | 75 | 69 | ||
ε | anatase | 0.003 | 0.005 | −0.0014 | 0.007 | – | |
h-MoO3 | – | 0.0009 | 0.0015 | 0.0011 | 0.0005 |
Anodes | Capacity (mAh/g) | Current Density (A/g) | Cycle Number | References |
---|---|---|---|---|
Coated MoO2 (graphene) | 560 | 1 | 200 | [81] |
MoO2/Mo2C heteronanotubes | 790 | 0.2 | 140 | [82] |
F-doped MoOx | 905 | 0.2 | 50 | [83] |
MoOx/C microballs | 733 | 2 | 300 | [84] |
MoOx/CNT | 420 | 0.2 | 100 | [85] |
Sample | Surface Concentration of Elements | |||||||
---|---|---|---|---|---|---|---|---|
C | O | Mo | Ti | F | Li | P | Cu | |
Atomic Percent | ||||||||
Ti5Mo5 | 13 | 62 | 13 | 12 | - | - | - | - |
Ti5Mo5 electrode before CV experiments | 54 | 12 | 2 | 2 | 30 | - | - | - |
Ti5Mo5 electrode after CV experiments | 18 | 32 | 3 | – | 12 | 31 | 2 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, A.; Wojciechowska, W.; Kurc, B.; Pigłowska, M.; Synoradzki, K.; Gabała, E.; Moszyński, D.; Szybowicz, M.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals 2020, 10, 493. https://doi.org/10.3390/cryst10060493
Kubiak A, Wojciechowska W, Kurc B, Pigłowska M, Synoradzki K, Gabała E, Moszyński D, Szybowicz M, Siwińska-Ciesielczyk K, Jesionowski T. Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals. 2020; 10(6):493. https://doi.org/10.3390/cryst10060493
Chicago/Turabian StyleKubiak, Adam, Wiktoria Wojciechowska, Beata Kurc, Marita Pigłowska, Karol Synoradzki, Elżbieta Gabała, Dariusz Moszyński, Mirosław Szybowicz, Katarzyna Siwińska-Ciesielczyk, and Teofil Jesionowski. 2020. "Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application" Crystals 10, no. 6: 493. https://doi.org/10.3390/cryst10060493
APA StyleKubiak, A., Wojciechowska, W., Kurc, B., Pigłowska, M., Synoradzki, K., Gabała, E., Moszyński, D., Szybowicz, M., Siwińska-Ciesielczyk, K., & Jesionowski, T. (2020). Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals, 10(6), 493. https://doi.org/10.3390/cryst10060493