Investigation of the Blistering and Exfoliation Mechanism of GaAs Wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ Implantation
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Ion Implantation into the GaAs Wafer
3.2. Ion Implantation into the SiO2/Si3N4/GaAs Wafer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, D.; Young, J.L.; Lim, H.; Klein, W.E.; Chen, H.; Xi, Y.; Gai, B.; Deutsch, T.G.; Yoon, J. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, D.; Mukherjee, K.; Li, Y.; Zhang, C.; Kurczveil, G.; Huang, X.; Beausoleil, R.G. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl. 2019, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Geum, D.M.; Park, M.S.; Lim, J.Y.; Yang, H.D.; Song, J.D.; Kim, C.Z.; Yoon, E.; Kim, S.H.; Choi, W.J. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Christiansen, S.H.; Moutanabbir, O.; Gösele, U. The phenomenology of ion implantation-induced blistering and thin-layer splitting in compound semiconductors. J. Electron. Mater. 2010, 39, 2177–2189. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, M.; Deng, C.; Men, C.; Chen, D.; Zhu, L.; Yu, W.; Wei, X.; Di, Z.; Wang, X. Fabrication of high-quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure. Appl. Surf. Sci. 2015, 346, 46–49. [Google Scholar] [CrossRef]
- Woo, H.J.; Choi, H.W.; Kim, G.D.; Kim, J.K.; Hong, W.; Lee, H.R. Hydrogen ion implantation mechanism in GaAs-on-insulator wafer formation by ion-cut process. AIP Conf. Proc. 2006, 308, 308–312. [Google Scholar]
- Saha, U.; Devan, K.; Ganesan, S. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013. J. Nucl. Mater. 2018, 503, 30–41. [Google Scholar] [CrossRef]
- Shi, F.F.; Chang, K.L.; Hsieh, K.C. Interface morphology, chemistry and dislocation structures of wafer-bonded compound semiconductors. J. Phys. D Appl. Phys. 2009, 42, 085310. [Google Scholar] [CrossRef]
- Bruel, M. Silicon on insulator material technology. Electron. Lett. 1995, 31, 1201–1202. [Google Scholar] [CrossRef]
- Akatsu, T.; Plössl, A.; Scholz, R.; Stenzel, H.; Gösele, U. Wafer bonding of different III–V compound semiconductors by atomic hydrogen surface cleaning. J. Appl. Phys. 2003, 8, 3856–3862. [Google Scholar] [CrossRef] [Green Version]
- Stner, È.; Breitenstein, O.; Scholz, R.; Reiche, M.; Ka, G. Compound semiconductor interfaces obtained by direct wafer bonding in hydrogen or forming gas. J. Mater. Sci. Mater. Electron. 2002, 3, 593–595. [Google Scholar]
- Liang, D.I.; Fang, A.W.; Park, H.; Reynolds, T.O.M.E.; Warner, K.; Oakley, D.C.; Bowers, J.E. Low-Temperature Strong SiO2-SiO2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits. J. Electron. Mater. 2008, 37, 1552–1559. [Google Scholar] [CrossRef]
- Radu, I.; Szafraniak, I.; Scholz, R.; Alexe, M.; Gösele, U. Low-temperature layer splitting of (100) GaAs by He+H coimplantation and direct wafer bonding. Appl. Phys. Lett. 2003, 82, 2413–2415. [Google Scholar] [CrossRef]
- Dearnaley, G. Ion implantation. Nature 1975, 256, 5520. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Karlik, M.; Declemy, A. 6H-SiC blistering efficiency as a function of the hydrogen implantation fluence. Appl. Surf. Sci. 2019, 466, 141–150. [Google Scholar] [CrossRef]
- Telychko, M.; Mutombo, P.; Ondráček, M.; Hapala, P.; Bocquet, F.C.; Kolorenč, J.; Vondráček, M.; Jelínek, P.; Švec, M. Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 2014, 8, 7318–7324. [Google Scholar] [CrossRef]
- Tong, Q.Y.; Huang, L.J.; Gösele, U.M. Transfer of semiconductor and oxide films by wafer bonding and layer cutting. J. Electron. Mater. 2000, 29, 928–932. [Google Scholar] [CrossRef]
- Radu, I.; Szafraniak, I.; Scholz, R.; Alexe, M.; Gösele, U. GaAs on Si heterostructures obtained by He and/or H implantation and direct wafer bonding. J. Appl. Phys. 2003, 94, 7820–7825. [Google Scholar] [CrossRef]
- Webb, M.; Jeynes, C.; Gwilliam, R.M.; Tabatabaian, Z.; Royle, A.; Sealy, B.J. The influence of the ion implantation temperature and the flux on smart-cut© in GaAs. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 237, 193–196. [Google Scholar] [CrossRef]
- Woo, H.J.; Choi, H.W.; Kim, G.D.; Kim, J.K.; Kim, K.J. Blistering/exfoliation kinetics of GaAs by hydrogen and helium implantations. Surf. Coat. Technol. 2009, 203, 2370–2374. [Google Scholar] [CrossRef]
- Biersack, J.P.; Ziegler, J.F. The Stopping and Range of Ions in Solids. Ion Implant. Sci. Technol. 1984, 1, 51–108. [Google Scholar]
- Cherkashin, N.; Daghbouj, N.; Darras, F.X.; Fnaiech, M.; Claverie, A. Cracks and blisters formed close to a silicon wafer surface by He-H co-implantation at low energy. J. Appl. Phys. 2015, 118, 245–301. [Google Scholar] [CrossRef] [Green Version]
- Mitani, K.; Gösele, U.M. Formation of interface bubbles in bonded silicon wafers: A thermodynamic model. Appl. Phys. A Solids Surf. 1992, 54, 543–552. [Google Scholar] [CrossRef]
- Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Petersen, G.A.; Reno, J.L.; Dawson, L.R.; Lee, S.R. Formation of cavities in GaAs and InGaAs. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2000, 160, 476–498. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Callisti, M.; Sen, H.S.; Karlik, M.; Polcar, T. Microstructural evolution of helium-irradiated 6H–SiC subjected to different irradiation conditions and annealing temperatures: A multiple characterization study. Acta Mater. 2019, 181, 160–172. [Google Scholar] [CrossRef]
Sample No. | Materials | He+ Dose (1016/cm2) | H+ Dose (1016/cm2) | He+ Implantation Energy (keV) | H+ Implantation Energy (keV) |
---|---|---|---|---|---|
A | GaAs | 5 | — | 25 | — |
B | GaAs | 0.5 | 4 | 25 | 15 |
C | SiO2/Si3N4/GaAs | 5 | — | 300 | — |
D | SiO2/Si3N4/GaAs | 0.5 | 4 | 300 | 160 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Lan, T.; Li, C.; Li, J.; Wang, Z. Investigation of the Blistering and Exfoliation Mechanism of GaAs Wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ Implantation. Crystals 2020, 10, 520. https://doi.org/10.3390/cryst10060520
Huang R, Lan T, Li C, Li J, Wang Z. Investigation of the Blistering and Exfoliation Mechanism of GaAs Wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ Implantation. Crystals. 2020; 10(6):520. https://doi.org/10.3390/cryst10060520
Chicago/Turabian StyleHuang, Rui, Tian Lan, Chong Li, Jing Li, and Zhiyong Wang. 2020. "Investigation of the Blistering and Exfoliation Mechanism of GaAs Wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ Implantation" Crystals 10, no. 6: 520. https://doi.org/10.3390/cryst10060520
APA StyleHuang, R., Lan, T., Li, C., Li, J., & Wang, Z. (2020). Investigation of the Blistering and Exfoliation Mechanism of GaAs Wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ Implantation. Crystals, 10(6), 520. https://doi.org/10.3390/cryst10060520