Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing
Abstract
:1. Introduction
2. Materials and Methods
3. High-Temperature Rapid Thermal Processing of Ion-Implanted SiC
3.1. Phase Formation by Rapid Thermal Annealing of Ion Implanted Layers
3.2. Influence of the Ramp Rate on the Structure of the Recrystallized Layer
4. Phase-Selective Polytype Growth by Rapid Thermal Sublimation Growth
5. Low-Temperature Rapid Thermal Processing of Wurtzite Silicon Carbide
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lely, J.A. Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen. Ber. Deut. Keram. Ges. 1955, 32, 229–231. [Google Scholar]
- Tairov, Y.M.; Tsvetkov, V.F. Investigation of growth process of ingots of silicon carbide single crystals. J. Cryst. Growth 1978, 43, 209–212. [Google Scholar] [CrossRef]
- Ziegler, G.; Lanig, P.; Theis, D.; Weyrich, C. Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Trans. Electron. Dev. 1983, 30, 277–281. [Google Scholar] [CrossRef]
- Barrett, D.L.; Seidensticker, R.G.; Gaida, W.; Hopkins, R.H.; Choyke, W.J. SiC boule growth by sublimation vapour transport. J. Cryst. Growth 1991, 109, 17–23. [Google Scholar] [CrossRef]
- Cree Introduces 150-mm 4HN Silicon Carbide Epitaxial Wafers. Available online: https://www.cree.com/news-media/news/article/cree-introduces-150-mm-4hn-silicon-carbide-epitaxial-wafers (accessed on 31 August 2012).
- II-VI Unveils 200 mm Semi-Insulating SiC Substrates for 5Gs Pas. Available online: https://compoundsemiconductor.net/article/109010/II-VI_Unveils_200mm_Semi-insulating_SiC_Substrates_For_5G_PA (accessed on 10 October 2019).
- Bhalla, A. Recent developments accelerating SiC adoption. Mater. Sci. Forum 2018, 924, 793–798. [Google Scholar] [CrossRef]
- Neudeck, P.G.; Spry, D.J.; Krasowski, M.J.; Prokop, N.F.; Chen, L. Demonstration of 4H-SiC JFET digital ICs across 1000 °C temperature range without change in input voltage. Mater. Sci. Forum 2019, 963, 813–817. [Google Scholar] [CrossRef]
- Ryu, S.; Lichtenwalner, D.J.; O’Loughlin, M.O.; Capell, C.; Richmond, J.; Van Brunt, E.; Jonas, C.; Lemma, Y.; Burk, A.; Hull, B.; et al. 15 kV n-GTOs in 4H-SiC. Mater. Sci. Forum 2019, 963, 651–654. [Google Scholar] [CrossRef]
- Fair, R.B. Rapid thermal processing—A justification. In Rapid Thermal Processing: Science and Technology; Academic Press: Boston, MA, USA, 1993; pp. 1–11. [Google Scholar]
- Borisenko, V.E.; Hesketh, P.J. Rapid Thermal Processing of Semiconductors, 1st ed.; Springer: New York, NY, USA, 1997; pp. 1–30. [Google Scholar]
- Violin, E.E.; Demakov, K.D.; Kalnin, A.A.; Neubert, F.; Potapov, E.N.; Tairov, Y.M. Restoration of the structure of silicon carbide layers after ion implantation. Sov. Phys. Solid State 1984, 26, 960–961. [Google Scholar]
- Pezoldt, J.; Kalnin, A.A.; Moskkwna, D.R.; Savalyev, W.D. Polytype transitions in ion implanted silicon carbide. Nucl. Instr. Meth. Phys. Res. B 1993, 80–81, 943–948. [Google Scholar] [CrossRef]
- Ottaviani, L.; Lazar, M.; Locatelli, M.L.; Chante, J.P.; Heera, V.; Skorupa, W. Annealing studies of Al-implanted 6H-SiC in an induction furnace. Mater. Sci. Eng. B 2002, 91–92, 325–328. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Wang, C. Recent progress in ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 2016, 45, 267–284. [Google Scholar] [CrossRef]
- Porter, L.M.; Davis, R.F. A critical review of ohmic and rectifying contacts for silicon carbide. Mater. Sci. Eng. B 1995, 34, 83–105. [Google Scholar] [CrossRef]
- Vasilevskiy, K.; Zekentes, K.; Wright, N. Processing and characterization of ohmic contacts to silicon carbide. Adv. Res. Found. 2018, 37, 27–126. [Google Scholar]
- Roccaforte, F.; Brezeanu, G.; Ganmon, P.M.; Giannazzo, F.; Rascuna, S.; Saggio, M. Schottky contacts to silicon carbide: Physics, technology and applications. Adv. Res. Found. 2018, 37, 127–190. [Google Scholar]
- Steckl, A.J.; Li, J.P. Rapid thermal chemical vapour deposition growth of nanometer-thin SiC on silicon. Thin Solid Films 1992, 216, 149–154. [Google Scholar] [CrossRef]
- Cimalla, V.; Karagodina, K.V.; Pezoldt, J.; Eichhorn, G. Growth of thin ß-SiC layers by carbonization of Si surfaces by rapid thermal processing. Mater. Sci. Eng. B 1995, 29, 170–175. [Google Scholar] [CrossRef]
- Steckl, A.J.; Li, J.P. Epitaxial growth of beta-SiC on Si by RTCVD with C3H8 and SiH4. IEEE Trans. Electron Dev. 1992, 39, 64–74. [Google Scholar] [CrossRef]
- Cimalla, V.; Pezoldt, J.; Ecke, G.; Eichhorn, G. The buffer layer in RTCVD of SiC. Inst. Phys. Conf. Ser. 1996, 142, 153–156. [Google Scholar]
- Skorupa, W.; Panknin, D.; Anwand, W.; Voelskow, M.; Ferro, G.; Monteil, Y.; Leycuras, A.; Pezoldt, J.; McMahon, R.; Smith, M.; et al. Flash lamp supported deposition of 3C-SiC (FLASiC)—A promising technique to produce high quality cubic SiC layers. Mater. Sci. Forum 2004, 457–460, 175–180. [Google Scholar] [CrossRef]
- Pezoldt, J.; Morales, F.M.; Stauden, T.; Förster, C.; Polychroniadis, E.; Stoemenos, J.; Panknin, D.; Skorupa, W. Growth acceleration in FLASiC assisted short time liquid phase epitaxy by melt modification. Mater. Sci. Forum 2006, 527–529, 295–298. [Google Scholar] [CrossRef]
- Pezoldt, J.; Kups, T.; Stauden, T.; Schröter, B. Polarity determination and control of SiC grown on Si. Mater. Sci. Eng. B 2009, 165, 28–33. [Google Scholar] [CrossRef]
- As, D.J.; Frey, T.; Schikora, D.; Lischka, K.; Cimalla, V.; Pezoldt, J.; Goldhahn, R.; Kaiser, S.; Gebhardt, W. Cubic GaN epilayers grown by molecular beam epitaxy on thin ß-SiC/Si(001) substrates. Appl. Phys. Lett. 2000, 76, 1686–1688. [Google Scholar] [CrossRef]
- Lorenz, M.; Hochmuth, H.; Jammoul, A.; Ferro, G.; Förster, C.; Pezoldt, J.; Perez, J.Z.; Benndorf, G.; Lenzner, J.; Schmidt-Grund, R.; et al. Luminescence of ZnO thin films grown on pulsed laser deposition on 3C-SiC bufferred Si. Wiss. Techn. Ber. FZR 2005, 433, 74–82. [Google Scholar]
- Chiew, S.P.; McBride, G.; Amstrong, B.M.; Grimshaw, J.; Gamble, H.S.; Trocha-Grimshaw, J. Growth of beta-SiC layers by rapid thermal chemical vapour deposition. Microelectron. Eng. 1994, 25, 177–182. [Google Scholar] [CrossRef]
- Yih, P.H.; Li, J.P.; Steckl, A.J. SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapour deposition. IEEE Trans. Electron. Dev. 1994, 41, 281–287. [Google Scholar] [CrossRef]
- Verma, A.R.; Krishna, P. Polymorphism and Polytypism in Crystals; John Wiley & Sons: New York, NY, USA, 1966; pp. 8–91. [Google Scholar]
- Von Münch, W.; Pfaffeneder, I. Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane. Thin Solid Films 1976, 31, 39–51. [Google Scholar] [CrossRef]
- Shinozaki, S.S.; Sato, H. Microstructure of SiC prepared by chemical vapour deposition. J. Am. Ceram. Soc. 1978, 61, 425–429. [Google Scholar] [CrossRef]
- Kalnin, A.A.; Luchinin, V.V.; Neubert, F.; Tairov, Y.M. Crystal structure formation during synthesis of substances with multiple structurally stable states. Sov. Phys. Tech. Phys. 1984, 29, 807–809. [Google Scholar]
- Fisher, G.R.; Barnes, P. Towards a unified view of polytypism in silicon carbide. Philos. Mag. B 1990, 61, 217–236. [Google Scholar] [CrossRef]
- Agrosi, G.; Tempesta, G.; Capitani, G.C.; Scandale, E.; Siche, D. Multi-analytical study of syntactic coalescence of polytypes in a 6H-SiC sample. J. Cryst. Growth 2009, 311, 4784–4790. [Google Scholar] [CrossRef]
- Avrov, D.D.; Lebedev, A.O.; Tairov, Y.M. Polytype inclusions and polytype stability in silicon-carbide crystals. Semiconductors 2016, 50, 494–501. [Google Scholar] [CrossRef]
- Lebedev, A.A. Heterojunctions and superlattices based on silicon carbide. Semicond. Sci. Technol. 2006, 21, R17–R34. [Google Scholar] [CrossRef]
- Pezoldt, J. Are polytype transitions possible during boron diffusion? Mater. Sci. Eng. B 1995, 29, 99–104. [Google Scholar] [CrossRef]
- Pezoldt, J.; Stottko, B.; Kupris, G.; Ecke, G. Sputtering effects in hexagonal silicon carbide. Mater. Sci. Eng. 1995, 29, 94–98. [Google Scholar] [CrossRef]
- Camara, N.; Thuaire, A.; Bano, E.; Zekentes, K. Forward-bias degradation in 4H-SiC p+nn+ diodes: Influence of mesa etching. Phys. Status Solidi A 2005, 202, 660–664. [Google Scholar] [CrossRef]
- Moskvina, D.R.; Pezoldt, J.; Potapov, E.N.; Tairov, Y.M. Polytypic phase transitions induced by ion implantation. Sov. Phys. Semicond. 1989, 23, 1388–1389. [Google Scholar]
- Pezoldt, J.; Moskvina, D.R. Nonequilibrium phase transition in silicon carbide crystals. Sov. Tech. Phys. Lett. 1992, 18, 432–433. [Google Scholar]
- Ohno, T.; Koboyashi, N. Difference of secondary defect formation by high energy B+ and Al+ implantation into 4H-SiC. J. Appl. Phys. 2002, 91, 4136–4142. [Google Scholar] [CrossRef]
- Okojie, R.S.; Zhang, M.; Pirouz, P.; Tumakha, S.; Jessen, G.; Brillson, L.J. Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl. Phys. Lett. 2001, 79, 3056–3058. [Google Scholar] [CrossRef] [Green Version]
- Tumakha, S.; Brillson, L.J.; Jessen, G.H.; Okojie, R.S.; Lukco, D.; Zhang, M.; Pirouz, P. Chemically dependent traps and polytypes at Pt/Ti contacts to 4H and 6H–SiC and metallization. J. Vac. Sci. Technol. B 2002, 20, 554–560. [Google Scholar] [CrossRef]
- Tumakha, S.; Goss, S.H.; Brillson, L.J.; Okojie, R.S. Electronic states at annealed metal/4H-SiC interfaces. J. Vac. Sci. Technol. 2005, 23, 594–598. [Google Scholar] [CrossRef]
- Brigden, C.T.; Farnan, I.; Hania, P.R. Multi-nuclear NMR study of polytype and defect distribution in neutron irradiated silicon carbide. J. Nucl. Mater. 2014, 444, 92–100. [Google Scholar] [CrossRef]
- Brigden, C.T.; Farnan, I.; Hania, P.R. Corrigendum to ‘‘Multi-nuclear NMR study of polytype and defect distribution in neutron irradiated silicon carbide’’ [J. Nucl. Mater. 444 (2014) 92–100]. J. Nucl. Mater. 2014, 446, 257. [Google Scholar] [CrossRef]
- Ziegler, G.; Theis, D. A new degradation phenomena in blue light emitting silicon carbide diodes. IEEE Trans. Electron. Dev. 1981, 28, 425–427. [Google Scholar] [CrossRef]
- Skowronski, M.; Ha, S. Degradation of hexagonal silicon-carbide-based bipolar devices. J. Appl. Phys. 2006, 99, 011101. [Google Scholar] [CrossRef]
- Konishi, K.; Fujita, R.; Mori, Y.; Shima, A. Inducing defects in 3.3 kV SiC MOSFETs by annealing after ion implantation and evaluating their effect on bipolar degradation of the MOSFETs. Semicond. Sci. Technol. 2018, 33, 125014. [Google Scholar] [CrossRef]
- Dubrovskii, G.B. Superstructure, energy spectrum, and polytypism of silicon carbide crystals. Sov. Phys. Solid State 1972, 13, 2107. [Google Scholar]
- Powell, J.A.; Petit, J.B.; Edgar, J.H.; Jenkins, I.G.; Matus, L.G.; Yang, J.W.; Pirouz, P.; Choyke, W.J.; Clemen, L.; Yoganathan, M. Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001). Appl. Phys. Lett. 1991, 59, 333–335. [Google Scholar] [CrossRef]
- Pezoldt, J.; Kalnin, A.A.; Savelyev, W.D. Application of nonequilibrium phase transition to heteropolytype structure creation. Nucl. Instr. Meth. Phys. Res. B 1992, 65, 361–365. [Google Scholar] [CrossRef]
- Kalnin, A.A.; Neubert, F.; Pezoldt, J. Polytype patterning in epitaxial layers on the basis of non-equilibrium phase transitions. Diam. Relat. Mater. 1994, 3, 346–352. [Google Scholar] [CrossRef]
- Pezoldt, J.; Kalnin, A.A.; Savelyev, W.D. Desired β-SiC inclusions in α-SiC epitaxial layers by ion implantation assisted information centre creation. Z. Kristallogr. 1994, 8, 550. [Google Scholar]
- Fissel, A. Artificially layered heteropolytype structure based on SiC polytypes: Molecular beam epitaxy, characterization and properties. Phys. Rep. 2003, 379, 149–255. [Google Scholar] [CrossRef]
- Pezoldt, J.; Morales, F.M.; Kalnin, A.A. Local control of SiC polytypes. Phys. Status Solidi A 2007, 204, 1056–1062. [Google Scholar] [CrossRef]
- Chandrashekhar, M.V.; Thomas, C.I.; Lu, J.; Spencer, M.G. Observation of a two dimensional electron gas formed in a polarization doped C-face 3C/4H SiC heteropolytypic junction. Appl. Phys. Lett. 2007, 91, 033503. [Google Scholar] [CrossRef]
- Lu, J.; Thomas, C.I.; Chandrashekhar, V.S.; Spencer, M.G. Measurement of spontaneous polarization in C-face 3C-SiC/6H-SiC heterostructures with two-dimensional electron gas by capacitance-voltage method. J. Appl. Phys. 2009, 105, 106108. [Google Scholar] [CrossRef]
- Polyakov, V.M.; Schwierz, F. Formation of two-dimensional electron gases in polytypic heterostructures. J. Appl. Phys. 2005, 98, 023709. [Google Scholar] [CrossRef]
- Matsushita, Y.-I.; Oshiyama, A. Interstitial channels that control band gaps and effective masses in tetrahedrally bonded semiconductors. Phys. Rev. Lett. 2014, 112, 136403. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.-B.; Morkoc, H. Material-based comparison for power heterojunction bipolar transistors. IEEE Trans. Electron. Dev. 1991, 38, 2410–2416. [Google Scholar] [CrossRef]
- Gao, G.-B.; Morkoc, H. High frequency performance of SiC heterojunction bipolar transistors. IEEE Trans. Electron. Dev. 1994, 41, 1092–1097. [Google Scholar]
- Iwata, H.; Lindefelt, U.; Öberg, S.; Briddon, P.R. A new type of quantum wells: Stacking faults in silicon carbide. Microelectr. J. 2003, 34, 371–374. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Lebedev, A.A.; Posrednik, O.V. Estimation of the exciton transition energy in NH/3C/NH (N = 2, 4, 6, 8) heterostructures based on silicon carbide polytypes. Semiconductors 2006, 40, 549–553. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Posrednik, O.V. The energy levels in quantum wells formed at the contacts between cubic and hexagonal polytypes of silicon carbide. Tech. Phys. Lett. 2005, 31, 746–748. [Google Scholar] [CrossRef]
- Bechstedt, F.; Käckell, P. Heterocrystalline structures: New types of superlattices? Phys. Rev. Lett. 1995, 75, 2180–2183. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.S.; Lambrecht, W.R.L. Electronic structure of thin heterocrystalline superlattices in SiC and AlN. Phys. Rev. B 2003, 68, 155320. [Google Scholar] [CrossRef] [Green Version]
- Deak, P.; Buruzs, A.; Gali, A.; Frauenheim, T.; Choyke, W.J. Silicon carbide: A playground for 1D-modulation electronics. Mater. Sci. Forum 2006, 527–529, 355–358. [Google Scholar] [CrossRef]
- Matsushita, Y.-I.; Furuya, S.; Oshiyama, A. Electron confinement due to stacking control of atomic layers in SiC polytypes: Role of floating states and spontaneous polarization. J. Phys. Soc. Jpn. 2014, 83, 094713. [Google Scholar] [CrossRef]
- Sugihara, Y.; Ichida, K.; Oshiyama, A. Electron and hole confinement in hetero-crystalline SiC superlattice. J. Phys. Soc. Jpn. 2015, 84, 084709. [Google Scholar] [CrossRef]
- Pezoldt, J. Heteropolytypic superlattices. Mater. Sci. Forum 2016, 858, 278–282. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Zamorianskaya, M.V.; Davydov, S.Y.; Kirilenko, D.A.; Lebedev, S.P.; Sorokin, L.M.; Shustov, D.B.; Scheglov, M.P. Investigation of the transition layer in 3C-SiC/6H-SiC heterostructures. Semiconductors 2013, 47, 1539–1543. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Lebedev, A.A.; Usikov, A.S. On specific features of silicon carbide heteropolytype epitaxy. Sci. Tech. J. Inf. Technol. Mech. Opt. 2015, 15, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, J.O. Selective vapour phase deposition on patterned substrates. Crit. Rev. Solid State 1990, 16, 217–236. [Google Scholar] [CrossRef]
- Janusonis, S.; Janusoniene, V. Self—Formation of the artificial planar systems: Theory and applications. Solid State Phenom. 2004, 97–98, 259–491. [Google Scholar] [CrossRef]
- Stein, R.A.; Lanig, P.; Leibenzeder, S. Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation. Mater. Sci. Eng. B 1992, 11, 69–71. [Google Scholar] [CrossRef]
- Arbel, A.; Natan, M. Effective diffusion time during rapid thermal processing. J. Appl. Phys. 1987, 61, 1209–1210. [Google Scholar] [CrossRef]
- Leitz, G.; Pezoldt, J.; Patzschke, I.; Zöllner, J.-P.; Eichhorn, G. Investigation of dynamical temperature behaviour in RTP. Mater. Res. Symp. Proc. 1992, 303, 171–178. [Google Scholar] [CrossRef]
- Cimalla, V.; Stauden, T.; Eichhorn, G.; Pezoldt, J. Influence of the heating ramp on the heteroepitaxial growth of SiC on Si. Mater. Sci. Eng. B 1999, 61–62, 553–558. [Google Scholar] [CrossRef]
- Michel, P.; Gauthier, J.P. Etude du polytypisme des cristaux de carbure de silicium par diffraction electronique par reflexion. J. Appl. Cryst. 1976, 9, 318–324. [Google Scholar] [CrossRef]
- Gauthier, J.P.; Duc, B.M.; Michel, P. Polytypisme du carbure de silicium: Diffraction electronique et simulation optique. J. Appl. Cryst. 1977, 10, 111–117. [Google Scholar] [CrossRef]
- Neubert, F.; Pezoldt, J. Investigation of the surface of silicon carbide with electron diffraction. Isv. LETI 1983, 322, 58–64. (In Russian) [Google Scholar]
- Scharmann, F.; Pezoldt, J. RHEED: A Tool for Structural Investigations of thin polytypic SiC layers. Mater. Sci. Forum 2002, 389–393, 463–466. [Google Scholar] [CrossRef]
- Shinozaki, S.; Sato, H. One-dimensional disordered structure and polytypism in SiC. Mater. Res. Bull. 1975, 10, 257–260. [Google Scholar]
- Shinozaki, S.; Kinsman, K.R. Aspects of “one dimensional disorder” in silicon carbide. Acta Metall. 1978, 26, 769–776. [Google Scholar] [CrossRef]
- Sakata, T.; Mori, H.; Yasuda, H.; Fujita, H. Crystallization of platinum implanted amorphous SiC. J. Electron. Microsc. 1992, 41, 185–189. [Google Scholar]
- Mori, H.; Sakata, T. High-resolution electron microscopy study on crystallization of gold implanted amorphous SiC. Nucl. Instr. Meth. Phys. Res. B 1994, 94, 73–80. [Google Scholar] [CrossRef]
- Dubey, M.; Singh, G. Recrystallization of SiC thin films. J. Phys. D Appl. Phys. 1974, 7, 1482–1484. [Google Scholar] [CrossRef]
- Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J. Distribution and characterization of iron in implanted silicon carbide. Mater. Res. Soc. Symp. Proc. 1992, 235, 363–368. [Google Scholar] [CrossRef]
- Heera, V.; Kögler, R.; Skorupa, W.; Stoemenos, J. Complete recrystallization of amorphous silicon carbide layers by ion radiation. Appl. Phys. Lett. 1995, 67, 1999–2001. [Google Scholar] [CrossRef]
- Bohn, H.G.; Williams, J.M.; McHargue, C.J.; Begun, G.M. Recrystallization of ion-implanted α-SiC. J. Mater. Res. 1987, 2, 107–116. [Google Scholar] [CrossRef]
- Heindl, J.; Strunk, H.P.; Heft, A.; Bachmann, T.; Glaser, E.; Wendler, E.; Wesch, W. Ion-implantation and annealing of 6H-SiC. Inst. Phys. Conf. Ser. 1995, 146, 435–438. [Google Scholar]
- Pacaud, Y.; Skorupa, W.; Stoemenos, J. Microstructural characterization of amorphized and recrystallized 6H-SiC. Nucl. Instr. Meth. Phys. Res. B 1996, 120, 181–185. [Google Scholar] [CrossRef]
- Bae, I.-T.; Ishimaru, M.; Hirotsu, Y.; Sickafus, K.E. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence. J. Appl. Phys. 2004, 96, 1451–1457. [Google Scholar] [CrossRef]
- Eryu, O.; Abe, K.; Nakashima, K.; Harima, H. Kinetics of sold phase regrowth of self-ion-implanted amorphous SiC during low temperature furnace annealing. Nucl. Instr. Meth. Phys. Res. B 2003, 206, 969–973. [Google Scholar] [CrossRef]
- Williams, J.S. Solid phase epitaxial regrowth phenomena in silicon. Nucl. Instr. Meth. Res. 1983, 209–210, 219–228. [Google Scholar] [CrossRef]
- Savaraliev, G.K.; Tairov, Y.M.; Tsvetkov, V.F.; Chernov, M.A. On the transfer of structural information during homoepitaxy in silicon carbide. Pizma v Zh. Tekh. Fiz. 1976, 2, 699–701. (In Russian) [Google Scholar]
- Vodakov, Y.A.; Mokhov, E.N.; Roenkov, A.D.; Saidbekov, D.T. Effect of crystallographic orientation on the polytype stabilization and transformation of silicon carbide. Phys. Status Solidi A 1979, 51, 209–215. [Google Scholar] [CrossRef]
- Kong, H.S.; Glass, J.T.; Davis, R.F. Chemical vapour deposition and characterization of 6H-SiC thin films on off-axis 6H-SiC substrates. J. Appl. Phys. 1988, 64, 2672–2679. [Google Scholar] [CrossRef]
- Kimoto, T.; Nishino, H.; Yoo, W.S.; Matsunami, H. Growth mechanism of 6H-SiC in step-controlled epitaxy. J. Appl. Phys. 1993, 73, 726–732. [Google Scholar] [CrossRef]
- Jagodzinski, H. Transition from cubic to hexagonal silicon carbide as a solid state reaction. Sov. Phys. Crystallogr. 1972, 16, 1081–1090. [Google Scholar]
- Tairov, Y.M.; Tsvetkov, V.F.; Chernov, M.A.; Taranets, V.A. Investigation of phase transformations and polytype stability of ß-SiC. Phys. Status Solidi A 1977, 43, 363–369. [Google Scholar] [CrossRef]
- Yoo, W.S.; Matsunami, H. Solid-state phase transformation in cubic silicon carbide. Jpn. J. Appl. Phys. 1991, 30, 545–553. [Google Scholar] [CrossRef]
- Püsche, R.; Hundhausen, M.; Ley, L.; Semmelroth, K.; Schmid, F.; Pensl, G.; Nagasawa, H. Temperature induced polytype conversion in cubic silicon carbide studied by Raman spectroscopy. J. Appl. Phys. 2004, 96, 5569–5574. [Google Scholar] [CrossRef]
- Boulle, A.; Abe, J.; Galben-Sandulache, I.G.; Chaussende, D. The 3C-6H polytypic transition in SiC as revealed by diffuse x-ray scattering. Appl. Phys. Lett. 2009, 94, 201904. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On the statistical theory of metal recrystallization (in russian). Izv Akad Nauk SSSR, Ser. Mat. 1937, 1, 355–359. [Google Scholar]
- Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change II. Transformation time relation for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Johnson, W.A.; Mehl, R.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–458. [Google Scholar]
- Inoue, S.; Yoshi, K.; Umeno, M.; Kawabe, H. Crystallisation behavior of amorphous Si1−xCx films prepared by r.f. sputtering. Thin Solid Films 1987, 151, 403–412. [Google Scholar] [CrossRef]
- Calcagano, L.; Musumeci, P.; Roccaforte, F.; Bongiorno, C.; Foti, G. Crystallization mechanism of amorphous silicon carbide. Appl. Surf. Sci. 2001, 184, 123–127. [Google Scholar] [CrossRef]
- Kurtenbach, D.; Mitchell, B.S.; Zhang, H.; Ade, M.; Müller, E. Crystallization kinetics of amorphous silicon carbide derived from polymeric precursors. Thermochim. Acta 1999, 337, 155–161. [Google Scholar] [CrossRef]
- Schmidt, H.; Fotsing, E.R.; Borchardt, G.; Chassagnon, R.; Chevalier, S.; Bruns, M. Crystallization kinetics of amorphous SiC films: Influence of substrate. Appl. Surf. Sci. 2005, 252, 1460–1470. [Google Scholar] [CrossRef]
- Osterberg, D.O.; Youngsman, J.; Ubic, R.; Reimanis, I.E.; Butt, D.P. Recrystallization kinetics of 3C silicon carbide implanted with 400 keV Cesium ions. J. Am. Ceram. Soc. 2013, 96, 3290–3295. [Google Scholar] [CrossRef] [Green Version]
- Höfgen, A.; Heera, V.; Eichhorn, F.; Skorupa, W.; Möller, W. Annealing and recrystallization of amorphous silicon carbide produced by ion implantation. Mater. Sci. Eng. B 1999, 61, 353–357. [Google Scholar]
- Mokhov, E.N.; Saparin, G.V.; Roenkov, A.D.; Obyden, S.K.; Akhmedov, B.A. Transformation of SiC poytypes in growth on profiled substrates. Bull. Russ. Acad. Sci. Phys. 1993, 57, 1345–1349. [Google Scholar]
- Kanaya, M.; Takahashi, J.; Fujiwara, Y.; Moritani, A. Controlled sublimation growth of single crystalline 4H-SiC and 6H-SiC and identification of polytypes by X-ray diffraction. Appl. Phys. Lett. 1991, 58, 56–58. [Google Scholar] [CrossRef]
- Spielmann, W. Epitaxiales Wachstum von SiC mit Hilfe von Methylsilan oder Silan und Propan. Z. Angew. Phys. 1965, 19, 93–94. [Google Scholar]
- Stan, M.A.; Patton, M.O.; Warner, J.D.; Yang, J.W.; Pirouz, P. Growth of 2H-SiC on 6H-SiC by pulsed laser ablation. Appl. Phys. Lett. 1994, 64, 2667–2669. [Google Scholar] [CrossRef]
- Lundquist, D. On the crystal structure of silicon carbide and its content of impurities. Acta Chem. Scand. 1948, 2, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Vakhner, K.; Tairov, Y.M. Polytypism of SiC-Sc crystal grown from solutions. Sov. Phys. Solid State USSR 1970, 12, 1213–1215. [Google Scholar]
- Jepps, N.W.; Page, T.F. Polytypic transformation in silicon carbide. Progr. Cryst. Growth Charact. 1983, 7, 259–307. [Google Scholar] [CrossRef]
- Iwasaki, H.; Inoue, S.; Yoshinobu, H.; Tarutani, M.; Takai, Y.; Shimizu, R.; Ito, H.; Kimoto, T.; Matsunami, H. 4H-SiC/6H-SiC interface structures studied by high-resolution transmission electron microscopy. Appl. Phys. Lett. 1993, 63, 2636–2637. [Google Scholar] [CrossRef]
- Setaka, N.; Ejira, K. Influence of oxygen on growth of 2H-SiC whiskers. J. Am. Ceram. Soc. 1969, 52, 60–61. [Google Scholar] [CrossRef]
- Neubert, F.; Smirnova, N.A. A possible source of structure information to form the 4H silicon carbide polytype. Isv. LETI 1982, 302, 32–39. (In Russian) [Google Scholar]
- Luchinin, V.V. Epitaxial growth of SiC in the presence of rare earth metals. Isv. LETI 1977, 211, 43–48. (In Russian) [Google Scholar]
- Vodakov, Y.A.; Mokhov, E.N.; Roenkov, A.D.; Anikin, M.M. Effect of impurities on the polymorphism of silicon carbide. Sov. Tech. Phys. Lett. 1979, 5, 367–370. [Google Scholar]
- Yoo, W.S.; Nishino, S.; Matsunami, H. Single crystal growth of hexagonal SiC on cubic SiC by intentional polytype control. J. Cryst. Growth 1990, 99, 278–283. [Google Scholar] [CrossRef]
- Luchinin, V.V.; Tairov, Y.M. Heteroepitaxial composition with the rare 2H polytype of silicon carbide on aluminum-nitride-sapphire insulating substrate. Sov. Tech. Phys. Lett. 1984, 10, 366–367. [Google Scholar]
- Van der Drift, A. Evolutionary selection a principle governing growth of orientation in vapour deposited layers. Phillips Res. Rep. 1968, 22, 267–288. [Google Scholar]
- Sato, T. Spectral emissivity of silicon. Jpn. J. Appl. Phys. 1967, 6, 339–347. [Google Scholar] [CrossRef]
- Liaw, P.; Davis, R.F. Epitaxial growth and characterization of ß-SiC thin films. J. Electrochem. Soc. 1985, 132, 642–648. [Google Scholar] [CrossRef]
- Wahab, Q.; Glass, R.C.; Ivanov, I.P.; Birch, J.; Sundgren, J.-E.; Willander, M. Growth of epitaxial 3C-SiC films on (111) silicon substrates at 850 °C by reactive magnetron sputtering. J. Appl. Phys. 1993, 74, 1663–1669. [Google Scholar] [CrossRef]
- Nagasawa, H.; Yaga, K. 3C-SiC single-crystal fims grown on 6-inch Si substrates. Phys. Status Solidi B 1997, 202, 335–358. [Google Scholar] [CrossRef]
- Fuyuki, T.; Hatayama, T.; Matsunam, H. Heterointerface control and epitaxial growth of 3C-SiC on Si by gas source molecular beam epitaxy. Phys. Status Solidi B 1997, 202, 359–378. [Google Scholar] [CrossRef]
- Anzalone, R.; Severino, A.; D’Arrgo, G.; Bongiorno, C.; Abbondanza, G.; Foti, G.; Saddow, S.; La Via, F. Heteroepitaxy of 3C-SiC on different on-axis silicon substrates. J. Appl. Phys. 2009, 105, 084910. [Google Scholar] [CrossRef]
- Ferro, G. 3C-SiC heteroepitaxial growth on silicon: The quest for Holy Grail. Crit. Rev. Solid State 2014, 40, 56–76. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. The theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films. J. Phys. D Appl. Phys. 2014, 47, 313001. [Google Scholar] [CrossRef]
- Matsumoto, S.; Suzuki, H.; Ueda, R. Formation of 2H-type SiC films by reactive sputtering. Jpn. J. Appl. Phys. 1972, 11, 607–608. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Hon, M.-H. The effect of argon addition on the microstructure, texture and phases of silicon carbide prepared by chemical vapour deposition. Nipp. Seram. Kyokai Gakijutsu Ronbushi 1991, 99, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, B.W.; Besmann, T.M.; More, K.I.; Moss, T.S. Epitaxial nucleation of polycrystalline silicon carbide during chemical vapour deposition. J. Mater. Res. 1993, 8, 1086–1092. [Google Scholar] [CrossRef]
- Sheldon, B.W.; Besmann, T.M.; More, K.I.; Moss, T.S. Erratum: Epitaxial nucleation of polycrystalline silicon carbide during chemical vapour deposition [J. Mater. Res. 8, 1086 (1993)]. J. Mater. Res. 1993, 8, 2417–2418. [Google Scholar] [CrossRef] [Green Version]
- Pezoldt, J.; Cimalla, V.; Stauden, T.; Ecke, G.; Eichhorn, G.; Scharmann, F.; Schipanski, D. Chemical conversion of Si to SiC by solid source MBE and RTCVD. Diam. Rel. Mater. 1997, 6, 1311–1315. [Google Scholar] [CrossRef]
- Nussupov, K.K.; Beisenkhanov, N.B.; Bakranova, D.I.; Keinbai, S.; Turakhun, A.A.; Sultan, A.A. Low-temperature synthesis of α-SiC nanocrystals. Phys. Solid State 2019, 61, 2473–2479. [Google Scholar] [CrossRef]
- Kusumori, T.; Muto, H.; Brito, M.E. Control of polytype formation in silicon carbide heteroepitaxial films by pulsed–laser deposition. Appl. Phys. Lett. 2004, 84, 1272–1274. [Google Scholar] [CrossRef]
- Ryan, C.E.; Berman, I.; Marshall, R.C.; Considine, D.P.; Hawley, J.J. Vapour-liquid-solid and melt growth of silicon carbide. J. Cryst. Growth 1967, 1, 255–262. [Google Scholar] [CrossRef]
- Powell, J.A. Crystal growth of 2H silicon carbide. J. Appl. Phys. 1969, 40, 4660–4662. [Google Scholar] [CrossRef]
- Adamsky, R.F.; Merz, K.M. Synthesis and crystallography of the wurtzite form of silicon carbide. Z. für Krist. 1959, 111, 350–361. [Google Scholar] [CrossRef]
- Li, J.-B.; Peng, G.; Chen, S.-R.; Chen, Z.-G.; Wu, J.-G. Formation and morphology of 2H-SiC whiskers by the decomposition of silicon nitride. J. Amer. Ceram. Soc. 1990, 73, 919–922. [Google Scholar] [CrossRef]
- Imade, M.; Takeuchi, S.; Uemura, M.; Yoshimura, M.; Kitaoka, Y.; Sasaki, T.; Mori, Y.; Itoh, S.; Okuda, H.; Yamazaki, M. Growth of single-phase 2H-SiC layers by vapour-liquid-solid process. Mater. Sci. Forum 2010, 645–648, 45–48. [Google Scholar] [CrossRef]
- Kitabatake, M.; Deguchi, M.; Hirao, T. Simulations and experiments of SiC heteroepitaxial growth on Si(001) surface. J. Appl. Phys. 1993, 74, 4438–4445. [Google Scholar] [CrossRef]
- Fissel, A. Thermodynamic considerations of the epitaxial growth of SiC polytypes. J. Cryst. Growth 2000, 212, 438–450. [Google Scholar] [CrossRef]
- Tanaka, S.; King, S.W.; Kern, R.S.; Davis, R.F. Control of the polytypes (3C, 2H) of silicon carbide thin films deposited on pseudomorphic aluminium nitride (0001) surfaces. Inst. Phys. Conf. Ser. 1996, 142, 109–112. [Google Scholar]
- Chien, F.R.; Nutt, S.R.; Carulli, J.M.; Buchan, N.; Beetz, C.P.; Yoo, W.S. Heteroepitaxial growth of ß-SiC films on TiC substrates: Interface structure and defects. J. Mater. Res. Soc. 2011, 9, 2086–2095. [Google Scholar] [CrossRef]
- Nilsson, D.; Janzen, E.; Kakanakova-Georgieva, A. Lattice parameters of bulk, homoepitaxial and heteroepiutaxial material. J. Phys. D: Appl. Phys. 2016, 49, 175108. [Google Scholar] [CrossRef]
- Schulz, H.; Thiemann, K.H. Structure parameters and polarity of wurtzite type compounds SiC-2H and ZnO. Solid State Commun. 1979, 32, 783–785. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezoldt, J.; Cimalla, V. Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing. Crystals 2020, 10, 523. https://doi.org/10.3390/cryst10060523
Pezoldt J, Cimalla V. Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing. Crystals. 2020; 10(6):523. https://doi.org/10.3390/cryst10060523
Chicago/Turabian StylePezoldt, Jörg, and Volker Cimalla. 2020. "Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing" Crystals 10, no. 6: 523. https://doi.org/10.3390/cryst10060523
APA StylePezoldt, J., & Cimalla, V. (2020). Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing. Crystals, 10(6), 523. https://doi.org/10.3390/cryst10060523