The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure
Abstract
:1. Introduction
2. Calculation Methods and Theoretical Models
3. Results and Discussion
3.1. Crystal Structural Properties
3.2. Enthalpy of Formation
3.3. Electronic Structures
3.4. Elastic Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Li, J.Q.; Song, H.B.; Liu, P.C. Research situation on addiction of magnesium alloys and its forming technology. Hot Work. Technol. 2013, 42, 24–27. [Google Scholar]
- Polmear, I.J. Magnesium alloys and addiction. Mater. Sci. Technol. 1994, 10, 1–16. [Google Scholar] [CrossRef]
- Li, X.K.; Zhang, Z.M.; Zhao, Y.L. Research and future development of wrought magnesium alloy. Hot Work. 2011, 40, 54–55. [Google Scholar]
- Liu, Z.; Cheng, N.; Zheng, Q.; Wu, J.; Han, Q.; Huang, Z.; Xing, J.; Li, Y.; Gao, Y. Processing and tensile properties of A356 composites containg in situ small-sized Al3Ti particulates. Mater. Sci. Eng. A 2018, 710, 392–399. [Google Scholar] [CrossRef]
- Hort, N.; Huang, Y.; Kainer, K.U. Intermetallics in magnesium alloys. Adv. Eng. Mater. 2006, 8, 235. [Google Scholar] [CrossRef]
- Zhou, Y.; Dang, M.; Sun, L.; Zhai, W.; Dong, H.; Gao, Q.; Zhao, F.; Peng, J. First-principle studies on the electronic structural, thermodynamics and elastic properties of Mg17Al12 intermediate phase under high pressure. Mater. Res. Express 2019, 6, 0865e1. [Google Scholar] [CrossRef]
- Taub, A.I.; Luo, A.A. Advanced lightweight materials and manufacturing processes for automotive applications. Mrs Bull. 2015, 40, 1045. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Mater. Charact. 2015, 101, 189–207. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Xiao, B.; Ma, Z. Mg/Al reaction and Mechanical properties of AL alloy/Mg alloy friction stir welding Joints. Acta Metall. Sin. 2010, 46, 589. (In Chinese) [Google Scholar] [CrossRef]
- Ben, A.A.; Munzti, A.; Kohn, G. The Minerals, Metals & Materials Society. In Proceedings of the TMS Annual Meeting, Seattle, WA, USA, 17–21 February 2002; p. 295. [Google Scholar]
- Liu, Z.J.; Gong, Y.; Su, Y.M. Study on Characteristics in TIG Welded Joint of Mg/Al Dissimilar Materials. J. Mater. Eng. 2015, 43, 18. (In Chinese) [Google Scholar]
- Azizi, A.; Alimardan, H. Transactions of Nonferrous Metals Society of China; Elsevier: Amsterdam, The Netherlands, 2016; p. 85. [Google Scholar]
- Zhuang, H.; Chen, M.; Carter, E.A. Elastic and thermodynamic properties of complex Mg-Al intermetallic compounds via orbital-free density functional theory. Phys. Rev. Appl. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.W.; Zhao, Y.H.; Hou, H.; Han, P.D. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Phys. B 2012, 407, 1075–1081. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Hu, X.W.; Li, D.J.; Zeng, X.Q.; Yang, X.; Xu, Y.X.; Zeng, X.S.; Wang, K.G.; Huang, B.L. Predictions of mechanical and thermodynamic properties of Mg17Al12 and Mg2Sn from first-principles calculations. Philos. Mag. 2015, 95, 1626–1645. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Samson, S.; Grodon, E.K. The Crystal Structure of ε-Mg23AI30*. Acta Cryst. Hica Sect. B 1968, 24, 1004. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Wei, Z.J.; Wang, H.W.; Cao, L. Effects of high pressure on microstructure and phase of Al-Mg-Zn alloy. Int. J. Cast Met. Res. 2006, 19, 269–273. [Google Scholar] [CrossRef]
- Hu, J.Q.; Xie, M.; Chen, J.L.; Liu, M.M.; Chen, Y.T.; Wang, S.B.; Li, A.K. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Phys. Sin. 2017, 66, 270–279. [Google Scholar]
- Chen, L.; Peng, P.; Li, G.; Liu, J.; Han, S. First-principle calculation of point defective structures of B2-RuAl intermetallic compound. Rare Met. Mater. Eng. 2006, 35, 1065. (In Chinese) [Google Scholar]
- Sahu, B.R. Electronic structure and bonding of ultralight LiMg. Mater. Sci. Eng. B 1997, 49, 74–78. [Google Scholar] [CrossRef]
- Fan, K.M.; Yang, L.; Tang, J.; Sun, Q.Q.; Zu, X.T. First-Principles Study of the Elastic Properties of Hexagonal Phase ScAx (A = H, He). In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; Volume 690. [Google Scholar]
- Parlinski, K.; Li, Z.Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZnO2. Phys. Rev. Lett. 1997, 78, 4064–4066. [Google Scholar] [CrossRef]
- Vanderbilt, D. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B 2000, 62, 2899. [Google Scholar]
- Sinko, G.V.; Smirov, N.A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. Phys. Condens. Matter. 2002, 14, 6989. [Google Scholar]
- Liu, Y.; Hu, W.C.; Li, D.J.; Zeng, X.Q.; Xu, C.S.; Yang, X.J. First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermetallics 2012, 31, 257–263. [Google Scholar] [CrossRef]
- Li, Y.F.; Xiao, B.; Sun, L.; Gao, Y.M.; Cheng, Y.H. Phonon optics, thermal expansion tensor, thermodynamic and chemical bonding properties of Al4SiC4 and Al4Si2C5: A first-principles study. RSC Adv. 2016, 6, 43191. [Google Scholar] [CrossRef]
- Mattesini, M.; Ahuja, R.; Johansson, B. Cubic Hf3N4 and Zr3N4: A class of hard materials. Phys. Rev. B 2003, 68, 184108. [Google Scholar]
- Wu, Z.J.; Zhao, E.J.; Xiang, H.P.; Hao, X.F.; Liu, X.J.; Meng, J. Crystal structures and elastic properties of syperhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Frantsevich, I.N.; Voronov, F.F.; Bokuta, S.A. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook; Naukova Dumka Publishing House: Kiev, Ukraine, 1983; pp. 60–180. [Google Scholar]
- Richard, R.C.D. The wear of metals by hard abrasives. Wear 1967, 10, 291–309. [Google Scholar] [CrossRef]
- Wang, J.; Hou, H.; Zhao, Y.H.; Han, P.D. First-principles study of mechanical properties and electronic structures of the nickle-molybedenum binary compounds under pressure. Rare Met. Matter Eng. 2018, 47, 846–852. [Google Scholar]
Pressure | a = b (Å) | c (Å) | Volume (Å3) | Density (g/cm3) | ΔH (eV/atom) |
---|---|---|---|---|---|
0 GPa | 12.86 | 21.66 | 3100.07 | 2.20 | −0.035 |
12.86 [21] | 21.72 | ||||
12.83 [22] | 21.75 | ||||
1 GPa | 12.88 | 21.23 | 3049.07 | 2.24 | - |
2 GPa | 12.80 | 21.12 | 2999.14 | 2.27 | - |
3 GPa | 12.73 | 21.03 | 2953.28 | 2.31 | - |
4 GPa | 12.67 | 20.94 | 2910.58 | 2.34 | - |
5 GPa | 12.61 | 20.86 | 2870.88 | 2.37 | - |
6 GPa | 12.55 | 20.78 | 2833.45 | 2.41 | - |
7 GPa | 12.49 | 20.70 | 2798.75 | 2.44 | - |
8 GPa | 12.44 | 20.63 | 2765.49 | 2.47 | - |
Pressure | Species | s | p | Total | Charge (e) |
---|---|---|---|---|---|
0 GPa | Mg | 0.72 | 6.62 | 7.34 | 0.66 |
Mg | 0.74 | 6.71 | 7.46 | 0.54 | |
Mg | 0.73 | 6.83 | 7.56 | 0.44 | |
Mg | 0.87 | 6.87 | 7.74 | 0.26 | |
Mg | 0.71 | 6.69 | 7.40 | 0.60 | |
Mg | 0.68 | 6.58 | 7.26 | 0.74 | |
Al | 1.19 | 2.18 | 3.37 | −0.37 | |
Al | 1.23 | 2.16 | 3.40 | −0.40 | |
Al | 1.23 | 2.17 | 3.40 | −0.40 | |
Al | 1.25 | 2.18 | 3.43 | −0.43 | |
Al | 1.31 | 2.23 | 3.54 | −0.54 | |
4 GPa | Mg | 0.70 | 6,59 | 7.29 | 0.71 |
Mg | 0.73 | 6.68 | 7.41 | 0.59 | |
Mg | 0.72 | 6.81 | 7.53 | 0.47 | |
Mg | 0.86 | 6.86 | 7.71 | 0.29 | |
Mg | 0.68 | 6.65 | 7.33 | 0.67 | |
Mg | 0.65 | 6.56 | 7.20 | 0.80 | |
Al | 1.17 | 2.23 | 3.40 | −0.40 | |
Al | 1.21 | 2.21 | 3.43 | −0.43 | |
Al | 1.21 | 2.23 | 3.44 | −0.44 | |
Al | 1.22 | 2.24 | 3.46 | −0.46 | |
Al | 1.29 | 2.29 | 3.58 | −0.58 | |
8 GPa | Mg | 0.68 | 6.57 | 7.25 | 0.75 |
Mg | 0.71 | 6.65 | 7.36 | 0.64 | |
Mg | 0.70 | 6.80 | 7.50 | 0.50 | |
Mg | 0.84 | 6.84 | 7.68 | 0.32 | |
Mg | 0.66 | 6.62 | 7.29 | 0.71 | |
Mg | 0.63 | 6.52 | 7.15 | 0.85 | |
Al | 1.16 | 2.27 | 3.43 | −0.43 | |
Al | 1.20 | 2.26 | 3.46 | −0.46 | |
Al | 1.19 | 2.28 | 3.47 | −0.47 | |
Al | 1.21 | 2.29 | 3.50 | −0.50 | |
Al | 1.28 | 2.33 | 3.61 | −0.61 |
Pressure | C11 = C22/GPa | C12/GPa | C13 = C23/GPa | C33/GPa | C44/GPa | C66/GPa |
---|---|---|---|---|---|---|
0 GPa | 78.49 | 37.35 | 44.93 | 79.33 | 27.45 | 20.57 |
82.30 [28] | 39.10 | 33.59 | 69.68 | 14.59 | - | |
1 GPa | 84.29 | 40.79 | 48.49 | 85.27 | 29.25 | 21.75 |
2 GPa | 89.35 | 43.92 | 52.74 | 90.96 | 30.83 | 22.71 |
3 GPa | 95.39 | 47.25 | 55.41 | 96.59 | 32.85 | 24.07 |
4 GPa | 100.65 | 50.34 | 58.78 | 103.55 | 34.39 | 25.15 |
5 GPa | 105.89 | 53.74 | 59.97 | 108.77 | 36.07 | 26.07 |
6 GPa | 111.58 | 56.28 | 65.22 | 113.66 | 38.01 | 27.65 |
Pressure | B/GPa | G/GPa | G/B | E/GPa | ν | HV/GPa |
---|---|---|---|---|---|---|
0 GPa | 51.06 | 24.45 | 0.48 | 63.26 | 0.29 | 3.43 |
1 GPa | 55.29 | 25.98 | 0.47 | 67.38 | 0.30 | 3.45 |
2 GPa | 59.06 | 27.28 | 0.46 | 70.92 | 0.30 | 3.64 |
3 GPa | 63.30 | 29.00 | 0.46 | 75.48 | 0.30 | 3.87 |
4 GPa | 67.11 | 30.34 | 0.45 | 79.10 | 0.30 | 4.06 |
5 GPa | 71.12 | 31.67 | 0.45 | 82.74 | 0.31 | 4.09 |
6 GPa | 74.71 | 33.46 | 0.45 | 87.34 | 0.31 | 4.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Hui, W.; Zhou, Y.; Zhai, W.; Dong, H.; Liu, Y.; Gao, Q.; Dang, M.; Peng, J. The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure. Crystals 2020, 10, 642. https://doi.org/10.3390/cryst10080642
Sun L, Hui W, Zhou Y, Zhai W, Dong H, Liu Y, Gao Q, Dang M, Peng J. The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure. Crystals. 2020; 10(8):642. https://doi.org/10.3390/cryst10080642
Chicago/Turabian StyleSun, Liang, Weihua Hui, Yong Zhou, Wenyan Zhai, Hui Dong, Yanming Liu, Qian Gao, Mohan Dang, and Jianhong Peng. 2020. "The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure" Crystals 10, no. 8: 642. https://doi.org/10.3390/cryst10080642
APA StyleSun, L., Hui, W., Zhou, Y., Zhai, W., Dong, H., Liu, Y., Gao, Q., Dang, M., & Peng, J. (2020). The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure. Crystals, 10(8), 642. https://doi.org/10.3390/cryst10080642