Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications
Abstract
:1. Introduction
2. Principles of Curvature Control
2.1. Crystal Structure and the Origin of Strain
2.2. An Overview of Nanotube Modelling
2.2.1. DFT and MD ‘Microscopic’ Models
2.2.2. Phenomenological ‘Macroscopic’ Models
2.3. Direct Introduction of Sheet Size Difference into the Energy Equations
3. Morphological Features Related to Cation Doping
3.1. Change in Size Parameters, Platy Morphology and Formation of By-Products
3.2. Tubes-in-Tubes, Cones and Cation Distribution
3.3. P.S.: Polygonal Serpentine
4. Properties and Applications Related to Cation Doping
4.1. Tuning Nanotubes’ Diameter for Uptake and Release
4.2. Mechanical Properties of Composite Materials
4.3. Magnetic Properties
4.4. Metal Reduction and Catalysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pauling, L. The Structure of the Chlorites. Proc. Natl. Acad. Sci. USA 1930, 16, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Bowen, N.L.; Tuttle, O.F. The system MgO-SiO2-H2O. Geol. Soc. Am. Bull. 1949, 60, 439–460. [Google Scholar] [CrossRef]
- Bates, T.F.; Hidebrand, F.A.; Swineford, A. Morphology and structure of endellite and halloysite. Am. Mineral. 1950, 35, 463–484. [Google Scholar]
- Bates, T.F.; Sand, L.B.; Mink, J.F. Tubular crystals of chrysotile asbestos. Science 1950, 111, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.M.; Roy, R. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Am. Mineral. 1954, 53, 957–975. [Google Scholar]
- Yang, J.C.-S. The growth of synthetic chrysotile fiber. Am. Mineral. 1961, 46, 748–752. [Google Scholar]
- Saito, H.; Yamai, I. The Effect of Iron Ions on the Formation of Chrysotile under Hydrothermal-Dehydration Process. J. Ceram. Assoc. Jpn. 1968, 76, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Yamai, I.; Kato, N. Conditions of Synthesis of Chrysotile Fibers under Hydrothermal-Dehydration Process. J. Ceram. Assoc. Jpn. 1968, 76, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Yada, K.; Iishi, K. Growth and microstructure of synthetic chrysotile. Am. Mineral. 1977, 62, 958–965. [Google Scholar]
- Whittaker, E.J.W. The structure of chrysotile. II. Clino-chrysotile. Acta Crystatllogr. 1956, 9, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, E.J.W. The structure of chrysotile. III. Ortho-chrysotile. Acta Crystatllogr. 1956, 9, 862–864. [Google Scholar] [CrossRef]
- Whittaker, E.J.W. The structure of chrysotile. IV. Para-chrysotile. Acta Crystatllogr. 1956, 9, 865–867. [Google Scholar] [CrossRef]
- Whittaker, E.J.W. The structure of chrysotile. V. Diffuse reflexions and fibre texture. Acta Crystatllogr. 1957, 10, 149–156. [Google Scholar] [CrossRef]
- Yoshinaga, N.; Aomine, S. Imogolite in some ando soils. Soil Sci. Plant Nutr. 1962, 8, 22–29. [Google Scholar] [CrossRef]
- Cradwick, P.D.G.; Farmer, V.C.; Russell, J.D.; Masson, C.R.; Wada, K.; Yoshinaga, N. Imogolite, a Hydrated Aluminium Silicate of Tubular Structure. Nat. Phys. Sci. 1972, 240, 187–189. [Google Scholar] [CrossRef]
- Farmer, V.C.; Fraser, A.R.; Tait, J.M. Synthesis of imogolite: A tubular aluminium silicate polymer. J. Chem. Soc. Chem. Commun. 1977, 12, 462–463. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015, 112–113, 75–93. [Google Scholar] [CrossRef]
- Mellini, M.; Cressey, G.; Wicks, F.J.; Cressey, B.A. The crystal structure of Mg end-member lizardite-1T forming polyhedral spheres from the Lizard, Cornwall. Mineral. Mag. 2010, 74, 277–284. [Google Scholar] [CrossRef]
- Weck, P.F.; Kim, E.; Jové-Colón, C.F. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: Beyond standard density functional theory. Dalt. Trans. 2015, 44, 12550–12560. [Google Scholar] [CrossRef]
- Parfitt, R.L. Allophane and imogolite: Role in soil biogeochemical processes. Clay Miner. 2009, 44, 135–155. [Google Scholar] [CrossRef]
- Thill, A.; Picot, P.; Belloni, L. A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane). Appl. Clay Sci. 2017, 141, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Berthonneau, J.; Grauby, O.; Jeannin, C.; Chaudanson, D.; Joussein, E.; Baronnet, A. Native Morphology of Hydrated Spheroidal Halloysite Observed by Environmental Transmission Electron Microscopy. Clays Clay Miner. 2015, 63, 368–377. [Google Scholar] [CrossRef]
- Cravero, F.; Fernández, L.; Marfil, S.; Sánchez, M.; Maiza, P.; Martínez, A. Spheroidal halloysites from Patagonia, Argentina: Some aspects of their formation and applications. Appl. Clay Sci. 2016, 131, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, J.E. The number of sections in polygonal serpentine. Can. Mineral. 1992, 30, 355–365. [Google Scholar]
- Cressey, B.A.; Whittaker, E.J.W. Five-Fold Symmetry in Chrysotile Asbestos Revealed by Transmission Electron Microscopy. Mineral. Mag. 1993, 57, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Dódony, I.; Buseck, P.R. Serpentines Close-Up and Intimate: An HRTEM View. Int. Geol. Rev. 2004, 46, 507–527. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Niedojadło, J.; Buszewski, B. Structural features of natural and acids modified chrysotile nanotubes. J. Phys. Chem. Solids 2011, 72, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Inukai, K.; Fujikura, K.; Kasuga, T. Effective encapsulation of laccase in an aluminium silicate nanotube hydrogel. New J. Chem. 2014, 38, 3591–3599. [Google Scholar] [CrossRef]
- Falini, G.; Foresti, E.; Gazzano, M.; Gualtieri, A.F.; Leoni, M.; Lesci, I.G.; Roveri, N. Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry 2004, 10, 3043–3049. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lei, X.R.; Yan, C.J.; Wang, H.Q.; Xiao, G.Q.; Hao, J.R.; Wang, D.; Qiu, X.M. Analysis on Crystal Structure of 7Å-Halloysite. Adv. Mater. Res. 2011, 415–417, 2206–2214. [Google Scholar] [CrossRef]
- Demichelis, R.; Noël, Y.; D’Arco, P.; Maschio, L.; Orlando, R.; Dovesi, R. Structure and energetics of imogolite: A quantum mechanical ab initio study with B3LYP hybrid functional. J. Mater. Chem. 2010, 20, 10417. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bartlow, V.M.; Nair, S. Phenomenology of the Growth of Single-Walled Aluminosilicate and Aluminogermanate Nanotubes of Precise Dimensions. Chem. Mater. 2005, 17, 4900–4909. [Google Scholar] [CrossRef]
- Alvarez-Ramírez, F. Ab initio simulation of the structural and electronic properties of aluminosilicate and aluminogermanate natotubes with imogolite-like structure. Phys. Rev. B 2007, 76, 125421. [Google Scholar] [CrossRef]
- Saalfeld, H.; Wedde, M. Refinement of the crystal structure of gibbsite, A1(OH)3. Z. Krist. Cryst. Mater. 1974, 139, 129–135. [Google Scholar] [CrossRef]
- Downs, R.T.; Palmer, D.C. The pressure behavior of α cristobalite. Am. Mineral. 1994, 79, 9–14. [Google Scholar]
- Desgranges, L.; Calvarin, G.; Chevrier, G. Interlayer interactions in M(OH)2: A neutron diffraction study of Mg(OH)2. Acta Crystallogr. Sect. B Struct. Sci. 1996, 52, 82–86. [Google Scholar] [CrossRef]
- Krstanović, I. Crystal structure of single-layer lizardite. Z. Krist. Cryst. Mater. 1968, 126, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Enyashin, A.N. Recent Advances in the Theory of Non-carbon Nanotubes. In Computational Materials Discovery; Oganov, A.R., Saleh, G., Eds.; Royal Society of Chemistry: Croydon, UK, 2018; pp. 352–391. ISBN 9781788010122. [Google Scholar]
- Konduri, S.; Mukherjee, S.; Nair, S. Strain energy minimum and vibrational properties of single-walled aluminosilicate nanotubes. Phys. Rev. B 2006, 74, 033401. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, L.; Enyashin, A.N.; Frenzel, J.; Heine, T.; Duarte, H.A.; Seifert, G. Imogolite nanotubes: Stability, electronic, and mechanical properties. ACS Nano 2007, 1, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Choi, Y.C.; Youm, S.G.; Sohn, D. Origin of the Strain Energy Minimum in Imogolite Nanotubes. J. Phys. Chem. C 2011, 115, 5226–5231. [Google Scholar] [CrossRef]
- Alvarez-Ramírez, F. Theoretical Study of (OH)3N2O3MOH, M = C, Si, Ge, Sn and N = Al, Ga, In, with Imogolite-Like Structure. J. Comput. Theor. Nanosci. 2009, 6, 1120–1124. [Google Scholar] [CrossRef]
- Guimarães, L.; Pinto, Y.N.; Lourenço, M.P.; Duarte, H.A. Imogolite-like nanotubes: Structure, stability, electronic and mechanical properties of the phosphorous and arsenic derivatives. Phys. Chem. Chem. Phys. 2013, 15, 4303–4309. [Google Scholar] [CrossRef] [PubMed]
- González, R.I.; Ramírez, R.; Rogan, J.; Valdivia, J.A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M. Model for Self-Rolling of an Aluminosilicate Sheet into a Single-Walled Imogolite Nanotube. J. Phys. Chem. C 2014, 118, 28227–28233. [Google Scholar] [CrossRef]
- González, R.I.; Valencia, F.J.; Rogan, J.; Valdivia, J.A.; Sofo, J.; Kiwi, M.; Munoz, F. Bending energy of 2D materials: Graphene, MoS2 and imogolite. RSC Adv. 2018, 8, 4577–4583. [Google Scholar] [CrossRef] [Green Version]
- Poli, E.; Elliott, J.D.; Ratcliff, L.E.; Andrinopoulos, L.; Dziedzic, J.; Hine, N.D.M.; Mostofi, A.A.; Skylaris, C.-K.; Haynes, P.D.; Teobaldi, G. The potential of imogolite nanotubes as (co-)photocatalysts: A linear-scaling density functional theory study. J. Phys. Condens. Matter 2016, 28, 074003. [Google Scholar] [CrossRef] [Green Version]
- Poli, E.; Elliott, J.D.; Chulkov, S.K.; Watkins, M.B.; Teobaldi, G. The Role of Cation-Vacancies for the Electronic and Optical Properties of Aluminosilicate Imogolite Nanotubes: A Non-local, Linear-Response TDDFT Study. Front. Chem. 2019, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.-H.; Tsou, N.-T.; Kang, D.-Y. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes. Nanoscale 2015, 7, 16222–16229. [Google Scholar] [CrossRef]
- Liou, K.-H.; Kang, D.-Y. Defective Single-Walled Aluminosilicate Nanotubes: Structural Stability and Mechanical Properties. ChemNanoMat 2016, 2, 189–195. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kang, D.-Y. Influence of interwall interaction in double-walled aluminogermanate nanotubes on mechanical properties. Comput. Mater. Sci. 2017, 135, 54–63. [Google Scholar] [CrossRef]
- Piperno, S.; Kaplan-Ashiri, I.; Cohen, S.R.; Popovitz-Biro, R.; Wagner, H.D.; Tenne, R.; Foresti, E.; Lesci, I.G.; Roveri, N. Characterization of Geoinspired and Synthetic Chrysotile Nanotubes by Atomic Force Microscopy and Transmission Electron Microscopy. Adv. Funct. Mater. 2007, 17, 3332–3338. [Google Scholar] [CrossRef]
- Lecouvet, B.; Horion, J.; D’Haese, C.; Bailly, C.; Nysten, B. Elastic modulus of halloysite nanotubes. Nanotechnology 2013, 24, 105704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, R.I.; Rogan, J.; Bringa, E.M.; Valdivia, J.A. Mechanical Response of Aluminosilicate Nanotubes under Compression. J. Phys. Chem. C 2016, 120, 14428–14434. [Google Scholar] [CrossRef]
- Guimarães, L.; Enyashin, A.N.; Seifert, G.; Duarte, H.A. Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. J. Phys. Chem. C 2010, 114, 11358–11363. [Google Scholar] [CrossRef]
- Lourenço, M.P.; de Oliveira, C.; Oliveira, A.F.; Guimarães, L.; Duarte, H.A. Structural, Electronic, and Mechanical Properties of Single-Walled Chrysotile Nanotube Models. J. Phys. Chem. C 2012, 116, 9405–9411. [Google Scholar] [CrossRef]
- Demichelis, R.; De La Pierre, M.; Mookherjee, M.; Zicovich-Wilson, C.M.; Orlando, R. Serpentine polymorphism: A quantitative insight from first-principles calculations. CrystEngComm 2016, 18, 4412–4419. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, F.; Armata, N.; Lazzara, G. Modeling of the Halloysite Spiral Nanotube. J. Phys. Chem. C 2015, 119, 16700–16707. [Google Scholar] [CrossRef]
- Prishchenko, D.A.; Zenkov, E.V.; Mazurenko, V.V.; Fakhrullin, R.F.; Lvov, Y.M.; Mazurenko, V.G. Molecular dynamics of the halloysite nanotubes. Phys. Chem. Chem. Phys. 2018, 20, 5841–5849. [Google Scholar] [CrossRef]
- Alvarez-Ramírez, F.; Toledo-Antonio, J.A.; Angeles-Chavez, C.; Guerrero-Abreo, J.H.; López-Salinas, E. Complete Structural Characterization of Ni3Si2O5(OH)4 Nanotubes: Theoretical and Experimental Comparison. J. Phys. Chem. C 2011, 115, 11442–11446. [Google Scholar] [CrossRef]
- Fu, L.; Yang, H. Structure and Electronic Properties of Transition Metal Doped Kaolinite Nanoclay. Nanoscale Res. Lett. 2017, 12, 411. [Google Scholar] [CrossRef] [PubMed]
- Singh, B. Why Does Halloysite Roll?—A New Model. Clays Clay Miner. 1996, 44, 191–196. [Google Scholar] [CrossRef]
- Perbost, R.; Amouric, M.; Olives, J. Influence of Cation Size on the Curvature of Serpentine Minerals: HRTEM-AEM Study and Elastic Theory. Clays Clay Miner. 2003, 51, 430–438. [Google Scholar] [CrossRef]
- Thill, A.; Guiose, B.; Bacia-Verloop, M.; Geertsen, V.; Belloni, L. How the Diameter and Structure of (OH)3Al2O3SixGe1–xOH Imogolite Nanotubes Are Controlled by an Adhesion versus Curvature Competition. J. Phys. Chem. C 2012, 116, 26841–26849. [Google Scholar] [CrossRef]
- Thill, A.; Maillet, P.; Guiose, B.; Spalla, O.; Belloni, L.; Chaurand, P.; Auffan, M.; Olivi, L.; Rose, J. Physico-chemical Control over the Single- or Double-Wall Structure of Aluminogermanate Imogolite-like Nanotubes. J. Am. Chem. Soc. 2012, 134, 3780–3786. [Google Scholar] [CrossRef]
- Chivilikhin, S.A.; Popov, I.Y.; Blinova, I.V.; Kirillova, S.A.; Konovalov, A.S.; Oblogin, S.I.; Tishkin, V.O.; Chernov, I.A.; Gusarov, V.V. Simulation of the formation of nanorolls. Glass Phys. Chem. 2007, 33, 315–319. [Google Scholar] [CrossRef]
- Chivilikhin, S.A.; Popov, I.Y.; Svitenkov, A.I.; Chivilikhin, D.S.; Gusarov, V.V. Formation and evolution of nanoscroll ensembles based on layered-structure compounds. Dokl. Phys. 2009, 54, 491–493. [Google Scholar] [CrossRef]
- Maillet, P.; Levard, C.; Spalla, O.; Masion, A.; Rose, J.; Thill, A. Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: An experimental and modeling approach. Phys. Chem. Chem. Phys. 2011, 13, 2682–2689. [Google Scholar] [CrossRef]
- Yucelen, G.I.; Kang, D.-Y.; Schmidt-Krey, I.; Beckham, H.W.; Nair, S. A generalized kinetic model for the formation and growth of single-walled metal oxide nanotubes. Chem. Eng. Sci. 2013, 90, 200–212. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Gusarov, V.V. Energy of formation of chrysotile nanotubes. Russ. J. Gen. Chem. 2014, 84, 2359–2363. [Google Scholar] [CrossRef]
- Prinz, V.Y. A new concept in fabricating building blocks for nanoelectronic and nanomechanic devices. Microelectron. Eng. 2003, 69, 466–475. [Google Scholar] [CrossRef]
- Mutilin, S.V.; Soots, R.A.; Vorob’ev, A.B.; Ikusov, D.G.; Mikhailov, N.N.; Prinz, V.Y. Microtubes and corrugations fabricated from strained ZnTe/CdHgTe/HgTe/CdHgTe heterofilms with 2D electron–hole gas in the HgTe quantum well. J. Phys. D Appl. Phys. 2014, 47, 295301. [Google Scholar] [CrossRef]
- Gulina, L.B.; Tolstoy, V.P.; Petrov, Y.V.; Danilov, D.V. Interface-Assisted Synthesis of Single-Crystalline ScF3 Microtubes. Inorg. Chem. 2018, 57, 9779–9781. [Google Scholar] [CrossRef] [PubMed]
- Chizmeshya, A.V.G.; McKelvy, M.J.; Sharma, R.; Carpenter, R.W.; Bearat, H. Density functional theory study of the decomposition of Mg(OH)2: A lamellar dehydroxylation model. Mater. Chem. Phys. 2003, 77, 416–425. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Nevedomsky, V.N.; Gusarov, V.V. Comparative Energy Modeling of Multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 Nanoscroll Growth. J. Phys. Chem. C 2017, 121, 12495–12502. [Google Scholar] [CrossRef]
- Krasilin, A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays Clay Miner. accepted. [CrossRef]
- Shchipalov, Y.K. Surface Energy of Crystalline and Vitreous Silica. Glass Ceram. 2000, 57, 374–377. [Google Scholar] [CrossRef]
- Churakov, S.V.; Iannuzzi, M.; Parrinello, M. Ab Initio Study of Dehydroxylation−Carbonation Reaction on Brucite Surface. J. Phys. Chem. B 2004, 108, 11567–11574. [Google Scholar] [CrossRef]
- Fleming, S.; Rohl, A.; Lee, M.-Y.; Gale, J.; Parkinson, G. Atomistic modelling of gibbsite: Surface structure and morphology. J. Cryst. Growth 2000, 209, 159–166. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Bandura, A.V. HF and DFT calculations of MgO surface energy and electrostatic potential using two- and three-periodic models. Int. J. Quantum Chem. 2004, 100, 452–459. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Gusarov, V.V. Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll. Russ. J. Gen. Chem. 2015, 85, 2238–2241. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Gusarov, V.V. Energy Model of Radial Growth of a Nanotubular Crystal. Tech. Phys. Lett. 2016, 42, 55–58. [Google Scholar] [CrossRef]
- Tolman, R.C. The Effect of Droplet Size on Surface Tension. J. Chem. Phys. 1949, 17, 333. [Google Scholar] [CrossRef] [Green Version]
- Vollath, D.; Fischer, F.D.; Holec, D. Surface energy of nanoparticles—Influence of particle size and structure. Beilstein J. Nanotechnol. 2018, 9, 2265–2276. [Google Scholar] [CrossRef]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the Hydrogen Bond Energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef]
- Ramesh, T.N.; Kamath, P.V.; Shivakumara, C. Classification of stacking faults and their stepwise elimination during the disorder → order transformation of nickel hydroxide. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 530–536. [Google Scholar] [CrossRef]
- Koza, J.A.; Hull, C.M.; Liu, Y.-C.; Switzer, J.A. Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chem. Mater. 2013, 25, 1922–1926. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, NY, USA, 1963; Volume 1, p. 467. [Google Scholar]
- Smith, G.S.; Isaacs, P.B. The crystal structure of quartz-like GeO2. Acta Crystallogr. 1964, 17, 842–846. [Google Scholar] [CrossRef]
- Lacks, D.J.; Gordon, R.G. Crystal-structure calculations with distorted ions. Phys. Rev. B 1993, 48, 2889–2908. [Google Scholar] [CrossRef]
- Deliens, M.; Goethals, H. Polytypism of heterogenite. Mineral. Mag. 1973, 39, 152–157. [Google Scholar] [CrossRef]
- Urusov, V.S. The phenomenological theory of solid solutions. Solid Solut. Silic. Oxide Syst. 2001, 3, 121–153. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Maillet, P.; Levard, C.; Larquet, E.; Mariet, C.; Spalla, O.; Menguy, N.; Masion, A.; Doelsch, E.; Rose, J.; Thill, A. Evidence of double-walled Al-Ge imogolite-like nanotubes. A cryo-TEM and SAXS investigation. J. Am. Chem. Soc. 2010, 132, 1208–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasilin, A.A.; Khrapova, E.K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russ. J. Appl. Chem. 2017, 90, 22–27. [Google Scholar] [CrossRef]
- White, R.D.; Bavykin, D.V.; Walsh, F.C. Spontaneous Scrolling of Kaolinite Nanosheets into Halloysite Nanotubes in an Aqueous Suspension in the Presence of GeO2. J. Phys. Chem. C 2012, 116, 8824–8833. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 1980; Volume 5, p. 544. ISBN 9780080570464. [Google Scholar]
- Almjasheva, O.V.; Krasilin, A.A.; Gusarov, V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosyst. Phys. Chem. Math. 2018, 9, 568–572. [Google Scholar] [CrossRef]
- Bloise, A.; Barrese, E.; Apollaro, C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jahrb. Mineral. Abh. 2009, 185, 297–304. [Google Scholar] [CrossRef]
- Maslennikova, T.P.; Gatina, E.N. Hydrothermal Synthesis of Ti-Doped Nickel Hydrosilicates of Various Morphologies. Russ. J. Appl. Chem. 2018, 91, 286–291. [Google Scholar] [CrossRef]
- Korytkova, E.N.; Pivovarova, L.N.; Semenova, O.E.; Drozdova, I.A.; Povinich, V.F.; Gusarov, V.V. Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russ. J. Inorg. Chem. 2007, 52, 338–344. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Barrese, E.; Miriello, D.; Apollaro, C. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers. Cryst. Res. Technol. 2009, 44, 590–596. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Suprun, A.M.; Gusarov, V.V. Influence of Component Ratio in the Compound (Mg,Fe)3Si2O5(OH)4 on the Formation of Nanotubular and Platelike Particles. Russ. J. Appl. Chem. 2013, 86, 1633–1637. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Panchuk, V.V.; Semenov, V.G.; Gusarov, V.V. Formation of Variable-Composition Iron(III) Hydrosilicates with the Chrysotile Structure. Russ. J. Gen. Chem. 2016, 86, 2581–2588. [Google Scholar] [CrossRef]
- Borghi, E.; Occhiuzzi, M.; Foresti, E.; Lesci, I.G.; Roveri, N. Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements. Phys. Chem. Chem. Phys. 2010, 12, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Shafia, E.; Esposito, S.; Manzoli, M.; Chiesa, M.; Tiberto, P.; Barrera, G.; Menard, G.; Allia, P.; Freyria, F.S.; Garrone, E.; et al. Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). J. Nanopart. Res. 2015, 17, 336. [Google Scholar] [CrossRef]
- Shafia, E.; Esposito, S.; Armandi, M.; Manzoli, M.; Garrone, E.; Bonelli, B. Isomorphic substitution of aluminium by iron into single-walled alumino-silicate nanotubes: A physico-chemical insight into the structural and adsorption properties of Fe-doped imogolite. Microporous Mesoporous Mater. 2016, 224, 229–238. [Google Scholar] [CrossRef]
- Korytkova, E.N.; Pivovarova, L.N.; Drosdova, I.A.; Gusarov, V.V. Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure. Russ. J. Gen. Chem. 2007, 77, 1669–1676. [Google Scholar] [CrossRef]
- Park, J.C.; Kang, S.W.; Kim, J.-C.; Kwon, J.I.; Jang, S.; Rhim, G.B.; Kim, M.; Chun, D.H.; Lee, H.-T.; Jung, H.; et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res. 2017, 10, 1044–1055. [Google Scholar] [CrossRef]
- Korytkova, E.N.; Maslov, A.V.; Pivovarova, L.N.; Polegotchenkova, Y.V.; Povinich, V.F.; Gusarov, V.V. Synthesis of Nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 Silicates at Elevated Temperatures and Pressures. Inorg. Mater. 2005, 41, 743–749. [Google Scholar] [CrossRef]
- McDonald, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microporous Mesoporous Mater. 2009, 120, 263–266. [Google Scholar] [CrossRef]
- White, R.D.; Bavykin, D.V.; Walsh, F.C. Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment. J. Mater. Chem. A 2013, 1, 548–556. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Semenova, A.S.; Kellerman, D.G.; Nevedomsky, V.N.; Gusarov, V.V. Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes. EPL (Europhys. Lett.) 2016, 113, 47006. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Fornero, E.; Rinaudo, C.; Barrese, E.; Capella, S. Influence of synthesis conditions on growth of Ni-doped chrysotile. Microporous Mesoporous Mater. 2010, 132, 239–245. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Suprun, A.M.; Nevedomsky, V.N.; Gusarov, V.V. Formation of Conical (Mg,Ni)3Si2O5(OH)4 Nanoscrolls. Dokl. Phys. Chem. 2015, 460, 42–44. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Gusarov, V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosyst. Phys. Chem. Math. 2017, 8, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Krasilin, A.A.; Khrapova, E.K.; Nominé, A.; Ghanbaja, J.; Belmonte, T.; Gusarov, V.V. Cation Redistribution along the Spiral of Ni-Doped Phyllosilicate Nanoscrolls: Energy Modelling and STEM/EDS Study. ChemPhysChem 2019, 20, 719–726. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Suprun, A.M.; Ubyivovk, E.V.; Gusarov, V.V. Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll. Mater. Lett. 2016, 171, 68–71. [Google Scholar] [CrossRef]
- Korytkova, E.N.; Brovkin, A.S.; Maslennikova, T.P.; Pivovarova, L.N.; Drozdova, I.A. Influence of the Physicochemical Parameters of Synthesis on the Growth of Nanotubes of the Mg3Si2O5(OH)4 Composition under Hydrothermal Conditions. Glass Phys. Chem. 2011, 37, 161–171. [Google Scholar] [CrossRef]
- Baronnet, A.; Mellini, M.; Devouard, B. Sectors in polygonal serpentine. A model based on dislocations. Phys. Chem. Miner. 1994, 21, 330–343. [Google Scholar] [CrossRef]
- Cressey, G.; Cressey, B.A.; Wicks, F.J.; Yada, K. A disc with fivefold symmetry: The proposed fundamental seed structure for the formation of chrysotile asbestos fibres, polygonal serpentine fibres and polyhedral lizardite spheres. Mineral. Mag. 2010, 74, 29–37. [Google Scholar] [CrossRef]
- Devouard, B.; Baronnet, A.; Van Tendeloo, G.; Amelinckx, S. First evidence of synthetic polygonal serpentines. Eur. J. Mineral. 1997, 9, 539–546. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Gusarov, V.V. Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls. Russ. J. Appl. Chem. 2015, 88, 1928–1935. [Google Scholar] [CrossRef]
- Amara, M.-S.; Paineau, E.; Bacia-Verloop, M.; Krapf, M.-E.M.; Davidson, P.; Belloni, L.; Levard, C.; Rose, J.; Launois, P.; Thill, A. Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes. Chem. Commun. 2013, 49, 11284–11286. [Google Scholar] [CrossRef] [PubMed]
- Paineau, E. Imogolite Nanotubes: A Flexible Nanoplatform with Multipurpose Applications. Appl. Sci. 2018, 8, 1921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.B.; Pan, L.; Zhang, H.Y.; Liu, S.T.; Ye, Y.; Xia, M.S.; Chen, X.G. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surf. A Physicochem. Eng. Asp. 2012, 396, 182–188. [Google Scholar] [CrossRef]
- Shu, Z.; Chen, Y.; Zhou, J.; Li, T.; Yu, D.; Wang, Y. Nanoporous-walled silica and alumina nanotubes derived from halloysite: Controllable preparation and their dye adsorption applications. Appl. Clay Sci. 2015, 112–113, 17–24. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, P.; Liu, D.; Du, P.; Zhou, J.; Wei, Y.; Song, Y.; Liu, Y. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite. Appl. Clay Sci. 2019, 181, 105240. [Google Scholar] [CrossRef]
- Yucelen, G.I.; Kang, D.-Y.; Guerrero-Ferreira, R.C.; Wright, E.R.; Beckham, H.W.; Nair, S. Shaping single-walled metal oxide nanotubes from precursors of controlled curvature. Nano Lett. 2012, 12, 827–832. [Google Scholar] [CrossRef]
- Maslennikova, T.P.; Korytkova, E.N. Influence of Synthesis of Physicochemical Parameters on Growth of Ni3Si2O5(OH)4 Nanotubes and Their Filling with Solutions of Hydroxides and Chlorides of Alkaline Metals. Glass Phys. Chem. 2013, 39, 67–72. [Google Scholar] [CrossRef]
- Ackerman, W.C.; Smith, D.M.; Huling, J.C.; Kim, Y.W.; Bailey, J.K.; Brinker, C.J. Gas/vapor adsorption in imogolite: A microporous tubular aluminosilicate. Langmuir 1993, 9, 1051–1057. [Google Scholar] [CrossRef]
- Ohashi, F.; Tomura, S.; Akaku, K.; Hayashi, S.; Wada, S.-I. Characterization of synthetic imogolite nanotubes as gas storage. J. Mater. Sci. 2004, 39, 1799–1801. [Google Scholar] [CrossRef]
- Bottero, I.; Bonelli, B.; Ashbrook, S.E.; Wright, P.A.; Zhou, W.; Tagliabue, M.; Armandi, M.; Garrone, E. Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Phys. Chem. Chem. Phys. 2011, 13, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Vitillo, J.G. Magnesium-based systems for carbon dioxide capture, storage and recycling: From leaves to synthetic nanostructured materials. RSC Adv. 2015, 5, 36192–36239. [Google Scholar] [CrossRef]
- Krasilin, A.A.; Danilovich, D.P.; Yudina, E.B.; Bruyere, S.; Ghanbaja, J.; Ivanov, V.K. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Appl. Clay Sci. 2019, 173, 1–11. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. Langmuir 2015, 31, 7472–7478. [Google Scholar] [CrossRef]
- Valentim, I.B.; Joekes, I. Adsorption of sodium dodecylsulfate on chrysotile. Colloids Surf. A Physicochem. Eng. Asp. 2006, 290, 106–111. [Google Scholar] [CrossRef]
- Bonini, M.; Gabbani, A.; Del Buffa, S.; Ridi, F.; Baglioni, P.; Bordes, R.; Holmberg, K. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays. Langmuir 2017, 33, 2411–2419. [Google Scholar] [CrossRef]
- Lo Dico, G.; Semilia, F.; Milioto, S.; Parisi, F.; Cavallaro, G.; Inguì, G.; Makaremi, M.; Pasbakhsh, P.; Lazzara, G. Microemulsion Encapsulated into Halloysite Nanotubes and their Applications for Cleaning of a Marble Surface. Appl. Sci. 2018, 8, 1455. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhai, L.; Wang, Y.; Liu, X.; Xu, L.; Cheng, L. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. J. Environ. Chem. Eng. 2015, 3, 752–762. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, S.; Zha, C.; Yao, Y.; Pan, X. Removal of simulated radionuclide Ce(III) from aqueous solution by as-synthesized chrysotile nanotubes. Chem. Eng. J. 2012, 213, 22–30. [Google Scholar] [CrossRef]
- Chiew, C.S.C.; Yeoh, H.K.; Pasbakhsh, P.; Poh, P.E.; Tey, B.T.; Chan, E.S. Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polym. Degrad. Stab. 2016, 123, 146–154. [Google Scholar] [CrossRef]
- Liou, K.-H.; Kang, D.-Y.; Lin, L.-C. Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination. ChemPhysChem 2017, 18, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.L.; Wei, X.D.; Hao, X.L.; Ruan, D.; Yu, S.M. The removal of strontium(II) and neodymium(III) from their aqueous solutions on chrysotile nanotubes. Adv. Mater. Res. 2014, 881–883, 519–524. [Google Scholar] [CrossRef]
- Maslennikova, T.P.; Korytkova, E.N. Aqueous Solutions of Cesium Salts and Cesium Hydroxide in Hydrosilicate Nanotubes of the Mg3Si2O5(OH)4 Composition. Glass Phys. Chem. 2010, 36, 345–350. [Google Scholar] [CrossRef]
- Maslennikova, T.P.; Korytkova, E.N. Regularities of the Filling of Mg3Si2O5(OH)4 Hydrosilicate Nanotubes with Solutions of Sodium Hydroxide and Sodium Chloride. Glass Phys. Chem. 2011, 37, 418–425. [Google Scholar] [CrossRef]
- Saki, H.; Alemayehu, E.; Schomburg, J.; Lennartz, B. Halloysite nanotubes as adsorptive material for phosphate removal from aqueous solution. Water 2019, 11, 203. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Chen, Y.; Zhou, J.; Li, T.; Sheng, Z.; Tao, C.; Wang, Y. Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption. Appl. Clay Sci. 2016, 132–133, 114–121. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, M.; Zheng, J.; Zhou, C. Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater. 2015, 201, 190–201. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Konnova, S.A.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.F.; Lvov, Y. Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef]
- Falcón, J.M.; Sawczen, T.; Aoki, I.V. Dodecylamine-Loaded Halloysite Nanocontainers for Active Anticorrosion Coatings. Front. Mater. 2015, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Zahidah, K.A.; Kakooei, S.; Ismail, M.C.; Raja, P.B. Halloysite nanotubes as nanocontainer for smart coating application: A review. Prog. Org. Coat. 2017, 111, 175–185. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Kardar, P.; Arabi, A.M.; Amini, R.; Pasbakhsh, P. The active corrosion performance of silane coating treated by praseodymium encapsulated with halloysite nanotubes. Prog. Org. Coat. 2020, 138, 105404. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, R.; Su, M.; Li, H.; Yue, X.; Qin, D.; Jiang, Z. Functionalization of halloysite nanotubes by enlargement and layer-by-layer assembly for controlled release of the fungicide iodopropynyl butylcarbamate. RSC Adv. 2019, 9, 42062–42070. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Jammalamadaka, U.; Sun, L.; Tappa, K.; Mills, D. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes. Bioengineering 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavitskaya, A.; Batasheva, S.; Vinokurov, V.; Fakhrullina, G.; Sangarov, V.; Lvov, Y.; Fakhrullin, R. Antimicrobial Applications of Clay Nanotube-Based Composites. Nanomaterials 2019, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Ferreira, C.; Veiga, F.; Ribeiro, A.J.; Panchal, A.; Lvov, Y.; Agarwal, A. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv. Colloid Interface Sci. 2018, 257, 58–70. [Google Scholar] [CrossRef]
- Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J. Mater. Chem. B 2016, 4, 2253–2263. [Google Scholar] [CrossRef]
- Bediako, E.G.; Nyankson, E.; Dodoo-Arhin, D.; Agyei-Tuffour, B.; Łukowiec, D.; Tomiczek, B.; Yaya, A.; Efavi, J.K. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon 2018, 4, e00389. [Google Scholar] [CrossRef] [Green Version]
- Fizir, M.; Dramou, P.; Dahiru, N.S.; Ruya, W.; Huang, T.; He, H. Halloysite nanotubes in analytical sciences and in drug delivery: A review. Microchim. Acta 2018, 185, 389. [Google Scholar] [CrossRef]
- Lvov, Y.M.; DeVilliers, M.M.; Fakhrullin, R.F. The application of halloysite tubule nanoclay in drug delivery. Expert Opin. Drug Deliv. 2016, 13, 977–986. [Google Scholar] [CrossRef]
- Stan, G.; Ciobanu, C.V.; Parthangal, P.M.; Cook, R.F. Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires. Nano Lett. 2007, 7, 3691–3697. [Google Scholar] [CrossRef]
- Lawrence, J.G.; Berkan, L.M.; Nadarajah, A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008, 2, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Krasilin, A.A.; Suprun, A.M.; Ubyivovk, E.V.; Nevedomsky, V.N.; Scherbin, B.O.; Petrov, A.A. Interconnection between composition, morphology and mechanics of chrysotile nanoscroll. In Proceedings of the Multinational Congress on Microscopy MCM 2015, Eger, Hungary, 23–28 August 2015; pp. 459–460. [Google Scholar]
- Ankudinov, A.V. On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope. Nanosyst. Phys. Chem. Math. 2019, 10, 642–653. [Google Scholar] [CrossRef] [Green Version]
- Yah, W.O.; Yamamoto, K.; Jiravanichanun, N.; Otsuka, H.; Takahara, A. Imogolite Reinforced Nanocomposites: Multifaceted Green Materials. Materials 2010, 3, 1709–1745. [Google Scholar] [CrossRef] [Green Version]
- Gaaz, T.; Sulong, A.; Kadhum, A.; Al-Amiery, A.; Nassir, M.; Jaaz, A. The Impact of Halloysite on the Thermo-Mechanical Properties of Polymer Composites. Molecules 2017, 22, 838. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wang, P.; Zheng, J. Use of ionic monomers to prepare halloysite polymer nanocomposites with reinforced mechanical performance. Appl. Clay Sci. 2017, 141, 248–256. [Google Scholar] [CrossRef]
- Dobrovol’skaya, I.P.; Popryadukhin, P.V.; Khomenko, A.Y.; Dresvyanina, E.N.; Yudin, V.E.; Elokhovskii, V.Y.; Chvalun, S.N.; Saprykina, N.N.; Maslennikova, T.P.; Korytkova, E.N. Structure and characteristics of chitosan-based fibers containing chrysotile and halloysite. Polym. Sci. Ser. A 2011, 53, 418–423. [Google Scholar] [CrossRef]
- Wu, Y.; Yudin, V.E.; Otaigbe, J.U.; Korytkova, E.N.; Nazarenko, S. Gas barrier behavior of polyimide films filled with synthetic chrysotile nanotubes. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1184–1193. [Google Scholar] [CrossRef]
- Rall, J.D.; Seehra, M.S. The nature of the magnetism in quasi-2D layered α-Ni(OH)2. J. Phys. Condens. Matter 2012, 24, 076002. [Google Scholar] [CrossRef]
- Miyamoto, H. The Magnetic Properties of Fe(OH)2. Mater. Res. Bull. 1976, 11, 329–335. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Q.; Li, J.; Zhuang, Y.; He, Y.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 Multi-Walled Nanotubes with Tunable Magnetic Properties and Their Application as Anode Materials for Lithium Batteries. Nano Res. 2011, 4, 882–890. [Google Scholar] [CrossRef]
- Nitta, Y.; Kawabe, M.; Sun, L.; Ohmachi, Y.; Imanaka, T. Preparation of uniformly dispersed nickel/silica catalysts from synthetic nickel-chrysotile. Appl. Catal. 1989, 53, 15–28. [Google Scholar] [CrossRef]
- Nitta, Y.; Ueno, K.; Imanaka, T. Selective Hydrogenation of α,β-Unsaturated Aldehydes on Cobalt-Silica Catalysts Obtained from Cobalt Chrysotile. Appl. Catal. 1989, 56, 9–22. [Google Scholar] [CrossRef]
- Sarvaramini, A.; Larachi, F. Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals. Fuel 2012, 97, 741–750. [Google Scholar] [CrossRef]
- Bian, Z.; Li, Z.; Ashok, J.; Kawi, S. A highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction. Chem. Commun. 2015, 51, 16324–16326. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, T.S.; Krasilin, A.A.; Khrapova, E.K.; Straumal, E.A.; Nomine, A.; Ghanbaja, J.; Ankudinov, A. V Charge injection into the Ni-phyllosilicate nanoscrolls with reduced Ni nanoparticles using Kelvin force probe microscopy. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Ekaterinburg, Russian, 25–28 August 2019; Volume 699, p. 012023. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, W.; Li, S.; Wu, G.; Ma, X.; Wang, X.; Gong, J. Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chem. Commun. 2013, 49, 9383. [Google Scholar] [CrossRef]
- Bian, Z.; Kawi, S. Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today 2020, 339, 3–23. [Google Scholar] [CrossRef]
- Ashok, J.; Ang, M.L.; Terence, P.Z.L.; Kawi, S. Promotion of the Water-Gas-Shift Reaction by Nickel Hydroxyl Species in Partially Reduced Nickel-Containing Phyllosilicate Catalysts. ChemCatChem 2016, 8, 1308–1318. [Google Scholar] [CrossRef]
- Sivaiah, M.V.; Petit, S.; Beaufort, M.F.; Eyidi, D.; Barrault, J.; Batiot-Dupeyrat, C.; Valange, S. Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous Mesoporous Mater. 2011, 140, 69–80. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, H.; Huang, Z.; Li, S.; Wu, G.; Ma, X.; Gong, J. Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO2: Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustain. Chem. Eng. 2013, 1, 161–173. [Google Scholar] [CrossRef]
- Bian, Z.; Suryawinata, I.Y.; Kawi, S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane. Appl. Catal. B Environ. 2016, 195, 1–8. [Google Scholar] [CrossRef]
- Philip, A.; Lihavainen, J.; Keinänen, M.; Pakkanen, T.T. Gold nanoparticle-decorated halloysite nanotubes—Selective catalysts for benzyl alcohol oxidation. Appl. Clay Sci. 2017, 143, 80–88. [Google Scholar] [CrossRef]
- Vinokurov, V.; Stavitskaya, A.; Glotov, A.; Ostudin, A.; Sosna, M.; Gushchin, P.; Darrat, Y.; Lvov, Y. Halloysite nanotube-based cobalt mesocatalysts for hydrogen production from sodium borohydride. J. Solid State Chem. 2018, 268, 182–189. [Google Scholar] [CrossRef]
- Stavitskaya, A.; Mazurova, K.; Kotelev, M.; Eliseev, O.; Gushchin, P.; Glotov, A.; Kazantsev, R.; Vinokurov, V.; Lvov, Y. Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer–Tropsch Synthesis. Molecules 2020, 25, 1764. [Google Scholar] [CrossRef] [Green Version]
- Sadjadi, S.; Lazzara, G.; Heravi, M.M.; Cavallaro, G. Pd supported on magnetic carbon coated halloysite as hydrogenation catalyst: Study of the contribution of carbon layer and magnetization to the catalytic activity. Appl. Clay Sci. 2019, 182, 105299. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Ren, P.; Li, W. Supported Ni catalyst on a natural halloysite derived silica–alumina composite oxide with unexpected coke-resistant stability for steam-CO2 dual reforming of methane. RSC Adv. 2016, 6, 49487–49496. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Wu, X.; Lv, S.; Dai, J. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3. Catal. Commun. 2016, 83, 18–21. [Google Scholar] [CrossRef]
- Szczepanik, B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 2017, 141, 227–239. [Google Scholar] [CrossRef]
- Abbasov, V.M.; Ibrahimov, H.C.; Mukhtarova, G.S.; Abdullayev, E. Acid treated halloysite clay nanotubes as catalyst supports for fuel production by catalytic hydrocracking of heavy crude oil. Fuel 2016, 184, 555–558. [Google Scholar] [CrossRef]
- Cheng, Z.-L.; Sun, W. Preparation and Solar Light Photocatalytic Activity of N-Doped TiO2-Loaded Halloysite Nanotubes Nanocomposites. J. Mater. Eng. Perform. 2015, 24, 4090–4095. [Google Scholar] [CrossRef]
- Vinokurov, V.A.; Stavitskaya, A.V.; Ivanov, E.V.; Gushchin, P.A.; Kozlov, D.V.; Kurenkova, A.Y.; Kolinko, P.A.; Kozlova, E.A.; Lvov, Y.M. Halloysite Nanoclay Based CdS Formulations with High Catalytic Activity in Hydrogen Evolution Reaction under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2017, 5, 11316–11323. [Google Scholar] [CrossRef]
- Sarvaramini, A.; Larachi, F. Mössbauer Spectroscopy and Catalytic Reaction Studies of Chrysotile-Catalyzed Steam Reforming of Benzene. J. Phys. Chem. C 2011, 115, 6841–6848. [Google Scholar] [CrossRef]
- Teixeira, A.P.C.; Santos, E.M.; Vieira, A.F.P.; Lago, R.M. Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis. Chem. Eng. J. 2013, 232, 104–110. [Google Scholar] [CrossRef]
- Narasimharao, K.; Ali, T.T.; Bawaked, S.; Basahel, S. Effect of Si precursor on structural and catalytic properties of nanosize magnesium silicates. Appl. Catal. A Gen. 2014, 488, 208–218. [Google Scholar] [CrossRef]
- López-Salinas, E.; Toledo-Antonio, J.A.; Manríquez, M.E.; Sánchez-Cantú, M.; Cruz Ramos, I.; Hernández-Cortez, J.G. Synthesis and catalytic activity of chrysotile-type magnesium silicate nanotubes using various silicate sources. Microporous Mesoporous Mater. 2019, 274, 176–182. [Google Scholar] [CrossRef]
- Bonelli, B.; Bottero, I.; Ballarini, N.; Passeri, S.; Cavani, F.; Garrone, E. IR spectroscopic and catalytic characterization of the acidity of imogolite-based systems. J. Catal. 2009, 264, 15–30. [Google Scholar] [CrossRef]
- Ookawa, M. Synthesis and Characterization of Fe-Imogolite as an Oxidation Catalyst. In Clay Minerals in Nature—Their Characterization, Modification and Application; Valaskova, M., Martynková, G.S., Eds.; InTech: London, UK, 2012; pp. 239–258. ISBN 978-953-51-0738-5. [Google Scholar]
- Krasilin, A.A.; Straumal, E.A.; Yurkova, L.L.; Khrapova, E.K.; Tomkovich, M.V.; Shunina, I.G.; Vasil’eva, L.P.; Lermontov, S.A.; Ivanov, V.K. Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1. Russ. J. Appl. Chem. 2019, 92, 1251–1257. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasilin, A.A.; Khrapova, E.K.; Maslennikova, T.P. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals 2020, 10, 654. https://doi.org/10.3390/cryst10080654
Krasilin AA, Khrapova EK, Maslennikova TP. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals. 2020; 10(8):654. https://doi.org/10.3390/cryst10080654
Chicago/Turabian StyleKrasilin, Andrei A., Ekaterina K. Khrapova, and Tatiana P. Maslennikova. 2020. "Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications" Crystals 10, no. 8: 654. https://doi.org/10.3390/cryst10080654
APA StyleKrasilin, A. A., Khrapova, E. K., & Maslennikova, T. P. (2020). Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals, 10(8), 654. https://doi.org/10.3390/cryst10080654