Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media
Abstract
:1. Introduction
2. Problem Formulation
3. Model of Generalized Hybrid Nanoliquid
4. Results and Discussion
5. Concluding Remarks
- The velocity augments for the (ASSF) and declines for the (OPPF) owing to magnifying the dimensionless radius of the slender body parameter while the change behavior is detected in response of the higher nanoparticle volume fraction .
- The persistent effect of , the velocity upsurges for the flow of the shape bodies like paraboloid shape body (), cylindrical shape body () as well as cone shape body () while the same behavior of the velocity is seen in the type A nanofluid and type B hybrid nanofluid.
- The velocity field decreases for the type A nanofluid as well as for the type B hybrid nanofluid and also for the flow over the different shape bodies owing to .
- Due to , the velocity upsurges for the type A nanofluid as well as for the type B hybrid nanofluid while for the type B hybrid nanofluid, the velocity is lesser relative to the type A nanofluid.
- The skin friction under the distinct shape bodies and along the type A nanofluid and type B hybrid nanofluid are augmented for both parameter and along the x-axis of the slender sheet in the range while vice versa in the range .
Author Contributions
Funding
Conflicts of Interest
References
- Nield, D.A. Onset of Thermohaline Convection in a Porous Medium. Water Resour. Res. 1968, 4, 553–560. [Google Scholar] [CrossRef]
- Bejan, A.; Khair, K.R. Heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transf. 1985, 28, 909–918. [Google Scholar] [CrossRef]
- Lai, F.; Pop, I.; Kulack, F. Free and mixed convection from slender bodies of revolution in porous media. Int. J. Heat Mass Transf. 1990, 33, 1767–1769. [Google Scholar] [CrossRef]
- Yih, K.A. Coupled heat and mass transfer by free convection over a truncated cone in porous media: VWT/VWC or VHF/VMF. Acta Mech. 1999, 137, 83–97. [Google Scholar] [CrossRef]
- Bano, N.; Singh, B.B. An integral treatment for coupled heat and mass transfer by natural convection from a radiating vertical thin needle in a porous medium. Int. Commun. Heat Mass Transf. 2017, 84, 41–48. [Google Scholar] [CrossRef]
- Singh, B.; Chandarki, I. Integral treatment of coupled heat and mass transfer by natural convection from a cylinder in porous media. Int. Commun. Heat Mass Transf. 2009, 36, 269–273. [Google Scholar] [CrossRef]
- Ahmad, S.; Pop, I. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Commun. Heat Mass Transf. 2010, 37, 987–991. [Google Scholar] [CrossRef]
- Talebizadeh, P.; Moghimi, M.A.; Kimiaeifar, A.; Ameri, M. Numerical and analytical solutions for natural convection flow with thermal radiation and mass transfer past a moving vertical porous plate by dqm and ham. Int. J. Comput. Methods 2011, 8, 611–631. [Google Scholar] [CrossRef]
- Moghimi, M.A.; Talebizadeh, P.; Mehrabian, M.A. Heat generation/absorption effects on magnetohydrodynamic natural convection flow over a sphere in a non-Darcian porous medium. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2010, 225, 29–39. [Google Scholar] [CrossRef]
- Moghimi, M.A.; Tabaei, H.; Kimiaeifar, A. HAM and DQM solutions for slip flow over a flat plate in the presence of constant heat flux. Math. Comput. Model. 2013, 58, 1704–1713. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Sandeep, N. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J. Mol. Liq. 2016, 215, 115–126. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Saleem, S.; Upadhya, S.M.; Hussain, I. Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model. Int. J. Therm. Sci. 2018, 132, 309–315. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 2004, 47, 5181–5188. [Google Scholar] [CrossRef]
- Ashorynejad, H.R.; Mohamad, A.A.; Sheikholeslami, M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int. J. Therm. Sci. 2013, 64, 240–250. [Google Scholar] [CrossRef]
- Ellahi, R.; Zeeshan, A.; Hassan, M. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 2160–2174. [Google Scholar] [CrossRef]
- Soomro, F.A.; Zaib, A.; Haq, R.U.; Sheikholeslami, M. Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int. J. Heat Mass Transf. 2019, 129, 1242–1249. [Google Scholar] [CrossRef]
- Tabassum, R.; Mehmood, R. Crosswise stream of methanol–iron oxide (CH3OH–Fe3O4) with temperature-dependent viscosity and suction/injection effects. Proc. Inst. Mech. Eng. Part E: J. Process. Mech. Eng. 2019, 233, 1013–1023. [Google Scholar] [CrossRef]
- Zaib, A.; Khan, U.; Wakif, A.; Zaydan, M. Numerical Entropic Analysis of Mixed MHD Convective Flows from a Non-Isothermal Vertical Flat Plate for Radiative Tangent Hyperbolic Blood Biofluids Conveying Magnetite Ferroparticles: Dual Similarity Solutions. Arab. J. Sci. Eng. 2020, 45, 5311–5330. [Google Scholar] [CrossRef]
- Sayed, A.Y.; Abdel-Wahed, M.S. Entropy analysis for an MHD nanofluid with a microrotation boundary layer over a moving permeable plate. Eur. Phys. J. Plus 2020, 135, 1–17. [Google Scholar] [CrossRef]
- Alsarraf, J.; Rahmani, R.; Shahsavar, A.; Afrand, M.; Wongwises, S.; Tran, M.D. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. J. Therm. Anal. Calorim. 2019, 137, 1809–1825. [Google Scholar] [CrossRef]
- Shahsavar, A.; Sardari, P.T.; Toghraie, D. Free convection heat transfer and entropy generation analysis of water–Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 915–934. [Google Scholar] [CrossRef]
- Khan, U.; Shafiq, A.; Zaib, A.; Baleanu, D. Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Stud. Therm. Eng. 2020, 21, 100660. [Google Scholar] [CrossRef]
- Minea, A.A. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transf. 2017, 104, 852–860. [Google Scholar] [CrossRef]
- Ghadikolaei, S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D. MHD boundary layer analysis for micropolar dusty fluid containing Hybrid nanoparticles (Cu-Al2O3) over a porous medium. J. Mol. Liq. 2018, 268, 813–823. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gerdroodbary, M.B.; Shafee, A.; Tlili, I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J. Therm. Anal. Calorim. 2019, 1–7. [Google Scholar] [CrossRef]
- Gholinia, M.; Armin, M.; Ranjbar, A.; Ganji, D. Numerical thermal study on CNTs/ C2H6O2– H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Stud. Therm. Eng. 2019, 14, 100490. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Mebarek-Oudina, F. Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab. J. Sci. Eng. 2020, 1–13. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surfaces A: Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Ahmad, R.; Mustafa, M.; Hina, S. Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study. Chin. J. Phys. 2017, 55, 1264–1274. [Google Scholar] [CrossRef]
- Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.; Pop, I. Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis. Energies 2018, 11, 3297. [Google Scholar] [CrossRef] [Green Version]
Property | Types | Correlation | |
---|---|---|---|
Density | A | ||
B | |||
C | |||
Viscosity | A | ||
B | |||
C | |||
Heat Capacity | A | ||
B | |||
C | |||
Thermal conductivity | A | ||
B & C | where | ||
Thermal expansion | A | ||
B | |||
C | |||
Pr | 6.2 | - | - |
Characteristic Properties | H2O | MoS2 | GO |
---|---|---|---|
997.1 | 5060 | 1800 | |
4179 | 397.21 | 717 | |
0.613 | 904.4 | 5000 | |
21 | 2.8424 × 10−5 | 2.84 × 10−4 |
b | Ahmed et al. [34] | Saleh et al. [35] | Current |
---|---|---|---|
0.01 | 8.4924360 | 8.4924452 | 8.4924456 |
0.1 | 1.2888171 | 1.2888299 | 1.28883009 |
Type B | Type C | ||
---|---|---|---|
0.025 | 0.025 | −2.3995 | −2.3973 |
0.030 | −2.3760 | −2.3733 | |
0.035 | −2.3527 | −2.3496 | |
0.030 | 0.025 | −2.3754 | −2.3727 |
0.030 | −2.3522 | −2.3490 | |
0.035 | −2.3292 | −2.3255 | |
0.035 | 0.025 | −2.3516 | −2.3485 |
0.030 | −2.3287 | −2.3250 | |
0.035 | −2.3060 | −2.3017 |
Type B | Type C | ||
---|---|---|---|
0.025 | 0.025 | 1.9037 | 1.9031 |
0.030 | 1.8954 | 1.8946 | |
0.035 | 1.8869 | 1.8859 | |
0.030 | 0.025 | 1.8951 | 1.8943 |
0.030 | 1.8866 | 1.8856 | |
0.035 | 1.8779 | 1.8767 | |
0.035 | 0.025 | 1.8862 | 1.8853 |
0.030 | 1.8776 | 1.8764 | |
0.035 | 1.8688 | 1.8673 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, U.; Zaib, A.; Sheikholeslami, M.; Wakif, A.; Baleanu, D. Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals 2020, 10, 771. https://doi.org/10.3390/cryst10090771
Khan U, Zaib A, Sheikholeslami M, Wakif A, Baleanu D. Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals. 2020; 10(9):771. https://doi.org/10.3390/cryst10090771
Chicago/Turabian StyleKhan, Umair, Aurang Zaib, Mohsen Sheikholeslami, Abderrahim Wakif, and Dumitru Baleanu. 2020. "Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media" Crystals 10, no. 9: 771. https://doi.org/10.3390/cryst10090771
APA StyleKhan, U., Zaib, A., Sheikholeslami, M., Wakif, A., & Baleanu, D. (2020). Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals, 10(9), 771. https://doi.org/10.3390/cryst10090771