Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design for Microplates
2.2. Crystal Growth
2.3. Sample Loading
2.4. Data Collection
2.5. Data Processing and Analysis
3. Results and Discussion
3.1. Crystal Growth in Microplates
3.2. In Situ Crystal Location
3.3. Background Scattering
3.4. Structure Determination with Microcrystals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mcpherson, A. In situ X-ray crystallography. J. Appl. Crystallogr. 2010, 33, 397–400. [Google Scholar] [CrossRef]
- Heymann, M.; Opthalage, A.; Wierman, J.L.; Akella, S.; Szebenyi, D.M.E.; Gruner, S.M.; Fraden, S. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 2014, 1, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D.L.L.; Tice, J.D.; Ismagilov, R.F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Nat. Acad. Sci. USA 2006, 103, 19243–19248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, S.L.; Guha, S.; Pawate, A.S.; Henning, R.; Kosheleva, I.; Šrajer, V.; Kenis, P.J.A.; Ren, Z. In situserial Laue diffraction on a microfluidic crystallization device. J. Appl. Crystallogr. 2014, 47, 1975–1982. [Google Scholar] [CrossRef]
- Kisselman, G.; Qiu, W.; Romanov, V.; Thompson, C.M.; Lam, R.; Battaile, K.P.; Pai, E.F.; Chirgadze, N.Y. X-CHIP: An integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr. Sect. D Boil. Crystallogr. 2011, 67, 533–539. [Google Scholar] [CrossRef]
- Bingel-Erlenmeyer, R.; Olieric, V.; Grimshaw, J.P.A.; Gabadinho, J.; Wang, X.; Ebner, S.G.; Isenegger, A.; Schneider, R.; Schneider, J.; Glettig, W.; et al. SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enablingin SituX-ray Diffraction Screening. Cryst. Growth Des. 2011, 11, 916–923. [Google Scholar] [CrossRef]
- Pinker, F.; Brun, M.; Morin, P.; Deman, A.-L.; Chateaux, J.-F.; Oliéric, V.; Stirnimann, C.; Lorber, B.; Terrier, N.; Ferrigno, R.; et al. ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature. Cryst. Growth Des. 2013, 13, 3333–3340. [Google Scholar] [CrossRef]
- Pineda-Molina, E.; Daddaoua, A.; Krell, T.; Ramos, J.L.; Delgado-López, J.M.; Gavira, J.A. In situ X-ray data collection from highly sensitive crystals of Pseudomonas putida PtxS in complex with DNA. Acta Crystallogr. Sect. F Struct. Boil. Cryst. Commun. 2012, 68, 1307–1310. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.K.; Gerdts, C.J.; Sanishvili, R.; Smith, W.W.; Roach, L.S.; Ismagilov, R.F.; Kuhn, P.; Stevens, R.C. In situdata collection and structure refinement from microcapillary protein crystallization. J. Appl. Crystallogr. 2005, 38, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Solvas, X.C.I.; Demello, A. Droplet microfluidics: Recent developments and future applications. Chem. Commun. 2011, 47, 1936–1942. [Google Scholar] [CrossRef]
- Maeki, M.; Yoshizuka, S.; Yamaguchi, H.; Kawamoto, M.; Yamashita, K.; Nakamura, H.; Miyazaki, M.; Maeda, H. X-ray diffraction of protein crystal grown in a nano-liter scale droplet in a microchannel and evaluation of its applicability. Anal. Sci. 2012, 28, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roedig, P.; Duman, R.; Sanchez-Weatherby, J.; Vartiainen, I.; Burkhardt, A.; Warmer, M.; David, C.; Wagner, A.; Meents, A. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J. Appl. Crystallogr. 2016, 49, 968–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, C.; Marx, A.; Epp, S.W.; Zhong, Y.; Kuo, A.; Balo, A.R.; Soman, J.; Schotte, F.; Lemke, H.T.; Owen, R.L.; et al. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct. Dyn. 2015, 2, 054302. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.D.; Lyubimov, A.Y.; Ogata, C.M.; Vo, H.; Uervirojnangkoorn, M.; Brünger, A.T.; Berger, J.M. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr. Sect. D Boil. Crystallogr. 2015, 71, 1987–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.Y.; Olieric, V.; Ma, P.K.; Panepucci, E.; Diederichs, K.; Wang, M.; Caffrey, M. In meso in situserial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr. Sect. D Boil. Crystallogr. 2015, 71, 1238–1256. [Google Scholar] [CrossRef] [Green Version]
- Roedig, P.; Vartiainen, I.; Duman, R.; Panneerselvam, S.; Stübe, N.; Lorbeer, O.; Warmer, M.; Sutton, G.; Stuart, D.I.; Weckert, E.; et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 2015, 5, 10451. [Google Scholar] [CrossRef]
- Zarrine-Afsar, A.; Barends, T.R.M.; Müller, C.; Fuchs, M.R.; Lomb, L.; Schlichting, I.; Miller, R.J.D. Crystallography on a chip. Acta Crystallogr. Sect. D Boil. Crystallogr. 2012, 68, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Huang, S.; Pan, Q.Y.; Li, M.-J.; Zhou, H.; Wang, Q.-S.; Yu, F.; Sun, B.; Chen, J.-Q.; He, J.-H. New design for multi-crystal data collection at SSRF. Nucl. Sci. Tech. 2018, 29, 21. [Google Scholar] [CrossRef]
- Baxter, E.L.; Aguila, L.; Alonso-Mori, R.; Barnes, C.O.; Bonagura, C.A.; Brehmer, W.; Brünger, A.T.; Calero, G.; Caradoc-Davies, T.T.; Chatterjee, R.; et al. High-density grids for efficient data collection from multiple crystals. Acta Crystallogr. Sect. D Struct. Boil. 2016, 72, 2–11. [Google Scholar] [CrossRef]
- Michalska, K.; Tan, K.; Chang, C.; Li, H.; Hatzos-Skintges, C.; Molitsky, M.; Alkire, R.; Joachimiak, A. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID. J. Synchrotron Radiat. 2015, 22, 1386–1395. [Google Scholar] [CrossRef] [Green Version]
- McPhillips, T.M.; McPhillips, S.E.; Chiu, H.J.; Cohen, A.E.; Deacon, A.M.; Ellis, P.J.; Garman, E.; Gonzalez, A.; Sauter, N.K.; Phizackerley, R.P.; et al. Blu-Ice and the Distributed Control System: Software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 2002, 9, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.L.; Rudino-Pinera, E.; Garman, E.F. Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 4912–4917. [Google Scholar] [CrossRef] [Green Version]
- Krug, M.; Weiss, M.S.; Heinemann, U.; Mueller, U. XDSAPP: A graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 2012, 45, 568–572. [Google Scholar] [CrossRef]
- Foadi, J.; Aller, P.; Alguel, Y.; Cameron, A.D.; Axford, D.; Owen, R.L.; Armour, W.; Waterman, D.G.; Iwata, S.; Evans, G. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. Sect. D Boil. Crystallogr. 2013, 69, 1617–1632. [Google Scholar] [CrossRef] [Green Version]
- Collaborative, C.P. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 1994, 50, 760. [Google Scholar] [CrossRef]
- Adams, P.D.; Grosse-Kunstleve, R.W.; Hung, L.W.; Ioerger, T.R.; McCoy, A.J.; Moriarty, N.W.; Read, R.J.; Sacchettini, J.C.; Sauter, N.K.; Terwilliger, T.C. PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr. Sect. D Boil. Crystallogr. 2002, 58, 1948–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nylon Loop (100 K) | Microplates (RT) | Microplates (100 K) | |
---|---|---|---|
Data collection | |||
Dominant size in sample (μm) | <20 | <20 | <20 |
Number of data sets | 1 | 5 | 4 |
Number of images | 60 | 25 | 40 |
Space group | P 4 2 2 | P 4 2 2 | P 4 2 2 |
Unit cell | |||
a, b, c(Å) | 79.33 79.33 36.94 | 79.21 79.21 37.83 | 79.80 79.80 36.96 |
a, b, c (°) | 90.00 90.00 90.00 | 90.00 90.00 90.00 | 90.00 90.00 90.00 |
Energy (keV) | 12 | 12 | 12 |
Resolution range (Å) | 39.66–1.96 | 37.83–2.15 | 39.90–1.98 |
Number of unique reflections | 8169 | 6796 | 7439 |
Completeness (%) | 94.9(86.9) | 97.5(95.9) | 87.7(84.6) |
Rmerge (%) | 4.5(46.4) | 10.8(88.0) | 9.6(52.0) |
<I/σ(I)> | 19.8(4.8) | 8.8(2.0) | 25.3(3.9) |
Redundancy | 4.5(3.9) | 3.6(2.9) | 2.5(3.1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Wang, Z.; Wu, H.; Yu, L.; Sun, B.; Zhou, H.; Yu, F.; Wang, Q.; He, J. Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline. Crystals 2020, 10, 798. https://doi.org/10.3390/cryst10090798
Liang M, Wang Z, Wu H, Yu L, Sun B, Zhou H, Yu F, Wang Q, He J. Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline. Crystals. 2020; 10(9):798. https://doi.org/10.3390/cryst10090798
Chicago/Turabian StyleLiang, Miao, Zhijun Wang, Hai Wu, Li Yu, Bo Sun, Huan Zhou, Feng Yu, Qisheng Wang, and Jianhua He. 2020. "Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline" Crystals 10, no. 9: 798. https://doi.org/10.3390/cryst10090798
APA StyleLiang, M., Wang, Z., Wu, H., Yu, L., Sun, B., Zhou, H., Yu, F., Wang, Q., & He, J. (2020). Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline. Crystals, 10(9), 798. https://doi.org/10.3390/cryst10090798