Tensile Creep Behavior of Single-Crystal High-Entropy Superalloy at Intermediate Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Crystal Casting
2.2. Heat Treatment
2.3. Creep Tests
2.4. Microstructural Observation
3. Results and Discussion
3.1. Long-Term Aging Test
3.2. Creep Properties
3.2.1. Creep Curves
3.2.2. Morphology of Microstructure
3.2.3. Lattice Rotation
3.2.4. Morphology of Dislocations
2-h interrupted specimen
30-h interrupted specimen
Root of Ruptured Specimen
3.2.5. Effect of Secondary γ′ Precipitates on Creep Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mat. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Miao, J.; Slone, C.E.; Smith, T.M.; Niu, C.; Bei, H.; Ghazisaeidi, M.; Pharr, G.M.; Mills, M.J. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater. 2017, 132, 35–48. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.S.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef]
- Ro, Y.; Koizumi, Y.; Harada, H. High temperature tensile properties of a series of nickel-base superalloys on a γ/γ′tie line. Mater. Sci. Eng. A 1997, 223, 59–63. [Google Scholar] [CrossRef]
- Yeh, A.-C.; Chang, Y.-J.; Tsai, C.-W.; Wang, Y.-C.; Yeh, J.-W.; Kuo, C.-M. On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy. Met. Mat. Trans. A 2014, 45, 184–190. [Google Scholar] [CrossRef]
- Tsao, T.-K.; Yeh, A.-C.; Kuo, C.-M.; Kakehi, K.; Murakami, H.; Yeh, J.-W.; Jian, S.-R. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy. Sci. Rep. 2017, 7, 12658. [Google Scholar] [CrossRef]
- Tsao, T.-K.; Yeh, A.-C.; Yeh, J.-W.; Chiou, M.-S.; Kuo, C.-M.; Murakami, H.; Kakehi, K. High Temperature Properties of Advanced Directionally-Solidified High Entropy Superalloys. In Proceedings of the 13th International Symposium on Superalloys (Superalloys 2016), Seven Springs, PA, USA, 11–15 September 2016; pp. 1001–1009. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Chang, Y.-J.; Murakami, H.; Sasaki, T.; Hono, K.; Li, C.-W.; Kakehi, K.; Yeh, J.-W.; Yeh, A.-C. Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Sci. Rep. 2020, 10, 12163. [Google Scholar] [CrossRef]
- Saito, T.; Chen, Y.-T.; Takata, Y.; Kawagishi, K.; Hsu, W.-C.; Yeh, A.-C.; Murakami, H. Effect of heat treatments on microstructural evolution of a single crystal high entropy superalloy. Metals 2020, 10, 1600. [Google Scholar] [CrossRef]
- Leverant, G.R.; Kear, B.H. The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures. Met. Mater. Trans. B 1970, 1, 491–498. [Google Scholar] [CrossRef]
- MacKay, R.A.; Maier, R.D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals. Met. Trans. A 1982, 13, 1747–1754. [Google Scholar] [CrossRef]
- Link, T.; Feller-Kniepmeier, M. Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep. Met. Trans. A 1992, 23, 99–105. [Google Scholar] [CrossRef]
- Rae, C.M.F.; Reed, R.C. Primary creep in single crystal superalloys: Origins, mechanisms and effects. Acta Mater. 2007, 55, 1067–1081. [Google Scholar] [CrossRef]
- Kovarik, L.; Unocic, R.R.; Li, J.; Sarosi, P.; Shen, C.; Wang, Y.; Mills, M.J. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog. Mater. Sci. 2009, 54, 839–873. [Google Scholar] [CrossRef]
- Drew, G.L.; Reed, R.C.; Kakehi, K.; Rae, C.M.F. Single crystal superalloys: The transition from primary to secondary creep. In Proceedings of the Tenth International Symposium on Superaloys (Superalloys 2004), Seven Springs, PA, USA, 19–23 September 2004; pp. 127–136. [Google Scholar] [CrossRef]
- Izuno, H.; Koizumi, Y.; Yokokawa, T.; Harada, H. Long time creep prediction of a creep constitutive equation of Ni-base single crystal superalloys. J. Jpn. Inst. Met. 2007, 71, 712–715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Murakumo, T.; Koizumi, Y.; Kobayashi, T.; Harada, H. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy. Acta Mater. 2003, 51, 5073–5081. [Google Scholar] [CrossRef]
- Gabrisch, H.; Mukherji, D.; Wahi, R.P. Deformation-induced dislocation networks at the γ-γ′ interfaces in the single-crystal superalloy SC16: A mechanism-based analysis. Philos. Mag. A 1996, 74, 229–249. [Google Scholar] [CrossRef]
- Leverant, G.R.; Kear, B.H.; Oblak, J.M. Creep of precipitation-hardened nickel-base alloy single crystals at high temperatures. Met. Trans. 1973, 4, 355–362. [Google Scholar] [CrossRef]
- Reppich, B. Some new aspects concerning particle hardening mechanisms in γ′ precipitating Ni-base alloy- 1. Theoretical concept. Acta Met. 1982, 1, 87–94. [Google Scholar] [CrossRef]
- Reppich, B.; Schepp, P.; Wehner, G. Some new aspects concerning particle hardening mechanisms in γ’ precipitating nickel-base alloys—II. Experiments. Acta Met. 1982, 30, 95–104. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, J.C.; Harada, H.; Koizumi, Y. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Mater. 2005, 53, 4623–4633. [Google Scholar] [CrossRef]
- Kakehi, K.; Takahashi, S. Influence of aging heat treatment on creep strength of CMSX4. J. Sociery Mater. Sci. Jpn. 2005, 54, 136–142. [Google Scholar] [CrossRef]
Heat Treatment | Procedure |
---|---|
Solution treatment | R.T.→(2.0 h)→1175 °C/2 h→(0.5 h)→1215 °C/5 h→A.C. |
Primary aging | 950 °C/20 h |
Secondary aging | 850 °C 20 h |
Number | β (deg) | φ (deg) | Temperature /°C | Stress/MPa | Detail | Cross Section |
---|---|---|---|---|---|---|
1 | 6.0 | 3.0 | 760 | 500 | Ruptured | Round |
2 | 30.0 | 6.0 | 760 | 520 | Ruptured | Round |
3 | 8.0 | 3.5 | 760 | 600 | Ruptured | Round |
4 | 9.0 | 4.0 | 760 | 520 | Interrupted at 2 h | Round |
5 | 1.0 | 3.0 | 760 | 520 | Interrupted at 50 h | Round |
6 | 39.0 | 9.0 | 760 | 520 | Ruptured after 100 h aging at 760 °C in creep machine | Round |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, T.; Ishida, A.; Yuyama, M.; Takata, Y.; Kawagishi, K.; Yeh, A.-C.; Murakami, H. Tensile Creep Behavior of Single-Crystal High-Entropy Superalloy at Intermediate Temperature. Crystals 2021, 11, 28. https://doi.org/10.3390/cryst11010028
Saito T, Ishida A, Yuyama M, Takata Y, Kawagishi K, Yeh A-C, Murakami H. Tensile Creep Behavior of Single-Crystal High-Entropy Superalloy at Intermediate Temperature. Crystals. 2021; 11(1):28. https://doi.org/10.3390/cryst11010028
Chicago/Turabian StyleSaito, Takuma, Akira Ishida, Michinari Yuyama, Yuji Takata, Kyoko Kawagishi, An-Chou Yeh, and Hideyuki Murakami. 2021. "Tensile Creep Behavior of Single-Crystal High-Entropy Superalloy at Intermediate Temperature" Crystals 11, no. 1: 28. https://doi.org/10.3390/cryst11010028
APA StyleSaito, T., Ishida, A., Yuyama, M., Takata, Y., Kawagishi, K., Yeh, A. -C., & Murakami, H. (2021). Tensile Creep Behavior of Single-Crystal High-Entropy Superalloy at Intermediate Temperature. Crystals, 11(1), 28. https://doi.org/10.3390/cryst11010028