High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonacina, L.; Mugnier, Y.; Courvoisier, F.; Le Dantec, R.; Extermann, J.; Lambert, Y.; Boutou, V.; Galez, C.; Wolf, J.P. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl. Phys. B Lasers Opt. 2007, 87, 399–403. [Google Scholar] [CrossRef]
- Hebboul, Z.; Galez, C.; Benbertal, D.; Beauquis, S.; Mugnier, Y.; Benmakhlouf, A.; Bouchenafa, M.; Errandonea, D. Synthesis, characterization, and crystal structure determination of a new lithium zinc iodate polymorph LiZn(IO3)3. Crystals 2019, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.J.; Chen, Y.G.; Guo, Y.; Guan, X.F.; Li, C.; Li, B.; Liu, M.M.; Zhang, X.M. LiMII(IO3)3 (MII = Zn and Cd): Two Promising Nonlinear Optical Crystals Derived from a Tunable Structure Model of α-LiIO3. Angew. Chemie Int. Ed. 2019, 58, 17194–17198. [Google Scholar] [CrossRef] [PubMed]
- Hebboul, Z.; Ghozlane, A.; Turnbull, R.; Benghia, A.; Allaoui, S. Simple new method for the preparation of La(IO3)3 nanoparticles. Nanomaterials 2020, 10, 2400. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.B. FTIR study of second group iodate crystals grown by gel method. Int. J. Grid Nad. Distrib. Comput. 2020, 13, 227–235. [Google Scholar]
- Benghia, A.; Hebboul, Z.; Chikhaoui, R.; Khaldoun Lefkaier, I.; Chouireb, A.; Goumri-Said, S. Effect of iodic acid concentration in preparation of zinc iodate: Experimental characterization of Zn(IO3)2, and its physical properties from density functional theory. Vacuum 2020, 181, 109660. [Google Scholar] [CrossRef]
- Kochuthresia, T.C.; Gautier-Luneau, I.; Vaidyan, V.K.; Bushiri, M.J. Raman and Ftir Spectral Investigations of Twinned M(IO3)2 (M = Mn, Ni, Co, AND Zn) Crystals. J. Appl. Spectrosc. 2016, 82, 941–946. [Google Scholar] [CrossRef]
- Shanmuga Sundar, G.J.; Kumar, S.M.R.; Packiya raj, M.; Selvakumar, S. Synthesis, growth, optical, mechanical and dielectric studies on NLO active monometallic zinc iodate [Zn(IO3)2] crystal for frequency conversion. Mater. Res. Bull. 2019, 112, 22–27. [Google Scholar] [CrossRef]
- Phanon, D.; Bentria, B.; Jeanneau, E.; Benbertal, D.; Mosset, A.; Gautier-Luneau, I. Crystal structure of M(IO3)2 metal iodates, twinned by pseudo-merohedry, with MII: MgII, MnII, CoII, NiII and ZnII. Z. Krist. 2006, 221, 635–642. [Google Scholar]
- Liang, J.K.; Wang, C.G. The structure of Zn(IO3)2 Crystal. Acta Chim. Sin. 1982, 40, 985–993. [Google Scholar]
- Mougel, F.; Kahn-Harari, A.; Aka, G.; Pelenc, D. Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals. J. Mater. Chem. 1998, 8, 1619–1623. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Saqib, H.; Rodriguez-Hernandez, P.; Munoz, A.; Nenert, G.; Yousef, I.; Popescu, C.; Errandonea, D. First-Order Isostructural Phase Transition Induced by High-Pressure in Fe(IO3)3. J. Phys. Chem. C 2020, 124, 8669–8679. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Rodriguez-Hernandez, P.; Muñoz, A.; Manjón, F.J.; Nenert, G.; Errandonea, D. High-pressure Raman study of Fe(IO3)3: Soft-mode behavior driven by coordination changes of iodine atoms. J. Phys. Chem. C 2020, 124, 21329–21337. [Google Scholar] [CrossRef]
- Sagotra, A.K.; Errandonea, D.; Cazorla, C. Mechanocaloric effects in superionic thin films from atomistic simulations. Nat. Commun. 2017, 8, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, N.L.; Detrie, T.A.; Liu, Z. High-pressure raman and infrared spectroscopic study of prehnite. Minerals 2020, 10, 312. [Google Scholar] [CrossRef] [Green Version]
- Peter, S.; Pracht, G.; Lange, N.; Lutz, H.D. Zinkiodate ± Schwingungsspektren (IR, Raman) und Kristallstruktur von Zn(IO3)2∙2H2O Zinc Iodates ± Infrared and Raman Spectra, Crystal Structure. Z. Anorg. Allg. Chem. 2000, 626, 208–215. [Google Scholar] [CrossRef]
- Asaumi, K.; Kondo, Y. Effect of very high pressure on the optical absorption spectra in CsI. Solid State Commun. 1981, 40, 715–718. [Google Scholar] [CrossRef]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Press. Res. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Bushiri, M.J.; Kochuthresia, T.C.; Vaidyan, V.K.; Gautier-Luneau, I. Raman scattering structural studies of nonlinear optical M(IO3)3 (M = Fe, Ga, and In) and linear optical β-In(IO3)3. J. Nonlinear Opt. Phys. Mater. 2014, 23, 1450039. [Google Scholar] [CrossRef]
- Crettez, J.M.; Gard, R.; Remoissenet, M. Near and far infrared investigations from α and β lithium iodate crystals. Solid State Commun. 1972, 11, 951–954. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Oliveira, M.A.S.; Bourson, P.; Crettez, J.M. Raman study of Li1−xHxIO3 crystals. J. Phys. Condens. Matter 1997, 9, 7903–7912. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Gomis, O.; Achary, S.N.; Popescu, C.; Patwe, S.J.; Tyagi, A.K. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO. Inorg. Chem. 2016, 55, 4958–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errandonea, D.; Manjón, F.J.; Garro, N.; Rodríguez-Hernández, P.; Radescu, S.; Mujica, A.; Muñoz, A.; Tu, C.Y. Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 054116. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, L.S.; Moraes, E.; Almeida, M.A.P.; Dalmaschio, C.J.; Batista, N.C.; Varela, J.A.; Longo, E.; Siu Li, M.; Andrés, J.; Beltrán, A. A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 2013, 54, 13–25. [Google Scholar] [CrossRef]
- Tschauner, O.; Errandonea, D.; Serghiou, G. Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure. Physica B 2006, 371, 88–94. [Google Scholar] [CrossRef]
- Errandonea, D.; Meng, Y.; Somayazulu, M.; Häusermann, D. Pressure-induced → ω transition in titanium metal: A systematic study of the effects of uniaxial stress. Physica B 2005, 355, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Mendes Fílho, J.; Lemos, V.; Cerdeira, F.; Katiyar, R.S. Raman and x-ray studies of a high-pressure phase transition in β-LiIO3 and the study of anharmonic effects. Phys. Rev. B 1984, 30, 7212–7218. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.X.; Wang, X.B.; Tang, S.H.; Li, H.P.; Zhou, F. High pressure raman study and phase transitions of KIO3 non-linear optical single crystals. Rev. High Press. Sci. Technol. No Kagaku To Gijutsu 1998, 7, 751–753. [Google Scholar] [CrossRef]
- Sans, J.A.; Vilaplana, R.; Lora da Silva, E.; Popescu, C.; Cuenca-Gotor, V.P.; Andrada-Chacoón, A.; Munñoz, A.; Sánchez-Benitez, J.; Gomis, O.; Pereira, A.L.J.; et al. Characterization and decomposition of the natural van der Waals SnSb2Te4 under compression. Inorg. Chem. 2020, 59, 9900–9918. [Google Scholar] [CrossRef]
Assignment | ω (cm−1) This Work IR | ω (cm−1) [5] IR | ω (cm−1) [6] IR | ω (cm−1) [7] IR | ω (cm−1) [7] Raman | ω (cm−1) [8] IR> | ω (cm−1) [16] Raman |
---|---|---|---|---|---|---|---|
Lattice modes | 61 | ||||||
67 | |||||||
73 | |||||||
80 | 80 | ||||||
98(2) | |||||||
107(2) | 101 | 100 | |||||
116(2) | 113 | 111 | |||||
125(2) | |||||||
135(2) | 132 | 139 | |||||
145(2) | 141 | 148 | |||||
158(2) | 152 | 155 | |||||
172(2) | 173 | 173 | |||||
183(2) | 180 | ||||||
193(2) | 189 | 187 | |||||
208(2) | |||||||
220(2) | |||||||
236(2) | |||||||
247(2) | |||||||
258(2) | 255 | ||||||
269(2) | 267 | 265 | |||||
ν2 | 322(2) | 327 | 327 | 327 | |||
336(2) | |||||||
348(2) | |||||||
353(2) | 354 | 354 | 351 | ||||
366 | |||||||
388(2) | 391 | ||||||
ν4 | 402(2) | 405 | |||||
425(2) | 418 | 418 | 424 | 422 | |||
440(2) | 432 | ||||||
452(2) | 444 | ||||||
524 |
ω (cm−1) Phase I 0.9 GP | dω/dP (cm−1/GPa) | ω (cm−1) Phase II 3.6 GPa | dω/dP (cm−1/GPa) | ω (cm−1) Phase III 8.8 GPa | dω/dP (cm−1/GPa) | ω (cm−1) Phase IV 13 GPa | dω/dP (cm−1/GPa) |
---|---|---|---|---|---|---|---|
158(2) | 1.5(1) | 163(2) | 5.3(1) | 188(2) | 0.6(1) | 190(2) | 4.2(1) |
172(2) | 2.1(1) | 178(2) | 3.8(1) | 197(2) | 3.0(1) | 210(2) | 2.0(1) |
183(2) | 3.3(1) | 192(2) | 3.6(1) | 212(2) | 2.2(1) | 222(2) | 1.1(1) |
193(2) | 4.0(1) | 204(2) | 3.7(1) | 223(2) | 7.8(1) | 255(2) | 3.3(1) |
207(2) | 5.3(1) | 221(2) | 2.9(1) | 236(2) | 8.0(1) | 269(2) | 2.1(1) |
220(2) | 7.8(1) | 241(2) | 7.2(1) | 280(2) | 5.3(1) | 302(2) | 2.4(1) |
236(2) | 7.5(1) | 257(2) | 6.8(1) | 292(2) | 2.3(1) | -- | -- |
247(2) | 8.7(1) | 272(2) | 6.2(1) | 302(2) | 3.1(1) | -- | -- |
258(2) | 8.6(1) | 283(2) | 6.1(1) | 312(2) | 3.2(1) | 326(2) | 4.9(1) |
269(2) | 7.9(1) | 291(2) | 6.4(1) | 323(2) | 5.7(1) | 348(2) | 4.1(1) |
322(2) | 4.1(1) | 331(2) | 4.2(1) | 347(2) | 5.6(1) | 373(2) | 6.4(1) |
336(2) | 3.4(1) | 345(2) | 3.1(1) | 368(2) | 6.0(1) | 393(2) | 5.6(1) |
353(2) | 3.8(1) | 364(2) | 4.9(1) | 389(2) | 7.1(1) | 419(2) | 4.9(1) |
361(2) | 4.6(1) | 375(2) | 6.4(1) | 407(2) | 5.2(1) | 429(2) | 6.3(1) |
388(2) | 4.8(1) | 401(2) | 5.2(1) | 424(2) | 1.8(1) | 450(2) | 3.4(1) |
425(2) | 4.6(1) | 439(2) | 4.4(1) | 465(2) | 0.5(1) | 471(2) | 4.3(1) |
440(2) | 4.4(1) | 453(2) | 4.7(1) | 477(2) | 0.7(1) | 482(2) | 4.8(1) |
452(2) | 4.5(1) | 464(2) | 4.4(1) | 488(2) | 6.5(1) | 509(2) | 5.1(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, A.; Turnbull, R.; Bandiello, E.; Yousef, I.; Popescu, C.; Hebboul, Z.; Errandonea, D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals 2021, 11, 34. https://doi.org/10.3390/cryst11010034
Liang A, Turnbull R, Bandiello E, Yousef I, Popescu C, Hebboul Z, Errandonea D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals. 2021; 11(1):34. https://doi.org/10.3390/cryst11010034
Chicago/Turabian StyleLiang, Akun, Robin Turnbull, Enrico Bandiello, Ibraheem Yousef, Catalin Popescu, Zoulikha Hebboul, and Daniel Errandonea. 2021. "High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation" Crystals 11, no. 1: 34. https://doi.org/10.3390/cryst11010034
APA StyleLiang, A., Turnbull, R., Bandiello, E., Yousef, I., Popescu, C., Hebboul, Z., & Errandonea, D. (2021). High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals, 11(1), 34. https://doi.org/10.3390/cryst11010034