Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of TaS2 Nanoflakes
2.4. Cascade Synthesis of Cu3TaS4 NCs
2.5. Hot-Injection Synthesis of Cu3TaS4 NCs
2.6. Preparation of TaSe2 Nanoflakes
2.7. Cascade Synthesis of Cu3TaSe4 NCs
2.8. Hot-Injection Synthesis of Cu3TaSe4 NCs
2.9. Fabrication of Cu3TaS4 NCs and Cu3TaSe4 Inks
2.10. Fabrication of Cu3TaS4 NCs and Cu3TaSe4 NCs Thin Films and Devices
3. Results and Discussion
3.1. TaS2 Nanoflakes Characterization
3.2. Cu3TaS4 NCs
3.2.1. Characterization of Cu3TaS4 NCs
3.2.2. Mechanism of Cu3TaS4 NCs Cascade Synthesis
3.2.3. Mechanism for Hot-Injection of Cu3TaS4 NCs
3.2.4. Optoelectrical and Conductive Properties of Cu3TaS4 NCs
3.3. Characterization of TaSe2 Nanoflakes
3.4. Cu3TaSe4 NCs
3.4.1. Characterization of Cu3TaSe4 NCs
3.4.2. Mechanism for Cascade Synthesis of Cu3TaSe4 NCs
3.4.3. Mechanism for Hot-Injection Formation of Cu3TaSe4 NCs
3.4.4. Optoelectrical and Conductivity Properties of Cu3TaSe4 NCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ginley, D.S.; Bright, C. Transparent Conducting Oxides. MRS Bull. 2000, 25, 15–18. [Google Scholar] [CrossRef]
- King, P.D.C.; Veal, T.D. Conductivity in transparent oxide semiconductors. J. Phys. Condens. Matter 2011, 23, 334214. [Google Scholar] [CrossRef]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Calnan, S.; Tiwari, A.N. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Film. 2010, 518, 1839–1849. [Google Scholar] [CrossRef]
- Espinosa-García, W.F.; Pérez-Walton, S.; Osorio-Guillén, J.M.; Moyses Araujo, C. The electronic and optical properties of the sulvanite compounds: A many-body perturbation and time-dependent density functional theory study. J. Phys. Condens. Matter 2017, 30, 035502. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.G. Criteria for Choosing Transparent Conductors. MRS Bull. 2000, 25, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44. [Google Scholar] [CrossRef]
- Hosono, H. Recent progress in transparent oxide semiconductors: Materials and device application. Thin Solid Film. 2007, 515, 6000–6014. [Google Scholar] [CrossRef]
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Angela, N.F.; Monica, M.-M. Bridging the p-type transparent conductive materials gap: Synthesis approaches for disperse valence band materials. J. Photonics Energy 2020, 10, 1–17. [Google Scholar]
- Kawazoe, H.; Yanagi, H.; Ueda, K.; Hosono, H. Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions. MRS Bull. 2000, 25, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Zhang, S.B.; Wei, S.-H. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 2002, 66, 073202. [Google Scholar] [CrossRef]
- Hosono, H.; Ueda, K. Transparent Conductive Oxides. In Springer Handbook of Electronic and Photonic Materials; Kasap, S., Capper, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; p. 1. [Google Scholar]
- Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389, 939–942. [Google Scholar] [CrossRef]
- Nagarajan, R.; Draeseke, A.D.; Sleight, A.W.; Tate, J. p-type conductivity in CuCr1−xMgxO2 films and powders. J. Appl. Phys. 2001, 89, 8022–8025. [Google Scholar] [CrossRef]
- Farrell, L.; Norton, E.; Smith, C.M.; Caffrey, D.; Shvets, I.V.; Fleischer, K. Synthesis of nanocrystalline Cu deficient CuCrO2—A high figure of merit p-type transparent semiconductor. J. Mater. Chem. C 2016, 4, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, M.; Rijnders, G.; Blank, D.H.A. ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide. Appl. Phys. Lett. 2007, 90, 021903. [Google Scholar] [CrossRef]
- Hiramatsu, H.; Ueda, K.; Ohta, H.; Orita, M.; Hirano, M.; Hosono, H. Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS. Appl. Phys. Lett. 2002, 81, 598–600. [Google Scholar] [CrossRef]
- Ali, A.; Jahan, N.; Islam, A.K.M. Sulvanite Compounds Cu3TMS4 (TM= V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using Firstprinciples Method. J. Sci. Res. 2014, 6, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; van Smaalen, S. Single crystal X-ray structure of Cu3TaSe4 and a comparative study of Cu3MX4 (M = V, Nb, Ta; X = S, Se, Te). Z. Anorg. Allg. Chem. 2014, 640, 931–934. [Google Scholar] [CrossRef]
- Hersh, P.A. Wide Band Gap Semiconductors and Insulators: Synthesis, Processing and Characterization. Doctoral Dissertation, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- Ikeda, S.; Aono, N.; Iwase, A.; Kobayashi, H.; Kudo, A. Cu3MS4 (M=V, Nb, Ta) and its Solid Solutions with Sulvanite Structure for Photocatalytic and Photoelectrochemical H2 Evolution under Visible-Light Irradiation. ChemSusChem 2019, 12, 1977–1983. [Google Scholar] [CrossRef]
- Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.Y.; Uğur, Ş.; Uğur, G.Ö.K.A.Y.; Reshak, A.H.; Soyalp, F.; Omran, S.B. Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM = V, Nb and Ta) Sulvanite Compounds via First-Principles Calculations. Sci. Adv. Mater. 2012, 5, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, M.; Zhang, T.; Qi, X.; Ming, G.; Wang, G.; Quan, X.; Yang, D. Natural sulvanite Cu3MX4 (M = Nb, Ta; X = S, Se): Promising visible-light photocatalysts for water splitting. Comput. Mater. Sci. 2019, 165, 137–143. [Google Scholar] [CrossRef]
- Kehoe, A.B.; Scanlon, D.O.; Watson, G.W. The electronic structure of sulvanite structured semiconductors Cu3MCh4 (M = V, Nb, Ta; Ch = S, Se, Te): Prospects for optoelectronic applications. J. Mater. Chem. C 2015, 3, 12236–12244. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, R.; Wild, P. Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4. J. Appl. Phys. 1967, 38, 5413–5414. [Google Scholar] [CrossRef]
- Petritis, D.; Martinez, G.; Levy-Clement, C.; Gorochov, O. Investigation of the vibronic properties of Cu3VS4, Cu3NbS4, and Cu3TaS4 compounds. Phys. Rev. B 1981, 23, 6773–6786. [Google Scholar] [CrossRef]
- Newhouse, P.F.; Hersh, P.A.; Zakutayev, A.; Richard, A.; Platt, H.A.S.; Keszler, D.A.; Tate, J. Thin film preparation and characterization of wide band gap Cu3TaQ4 (Q = S or Se) p-type semiconductors. Thin Solid Film. 2009, 517, 2473–2476. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Selopal, G.S.; Radu, D.R. Synthesis and optoelectronic properties of Cu3VSe4 nanocrystals. PLoS ONE 2020, 15, e0232184. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Müller, A.; Bouwma, J.; Jellinek, F. Übergangsmetall-chalklogen-verbindungen IR-und raman-spektren von Cu3Mx4 (m = v, nb, ta; x = s, se). J. Mol. Struct. 1972, 11, 275–282. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Zhang, M.; Radu, D.R. Cascade synthesis and optoelectronic applications of intermediate bandgap Cu3VSe4 nanosheets. Sci. Rep. 2020, 10, 21679. [Google Scholar] [CrossRef]
- Sarkar, S.; Leach, A.D.P.; Macdonald, J.E. Folded Nanosheets: A New Mechanism for Nanodisk Formation. Chem. Mater. 2016, 28, 4324–4330. [Google Scholar] [CrossRef]
- Barbir, F. Chapter Four-Main Cell Components, Material Properties, and Processes. In PEM Fuel Cells, 2nd ed.; Barbir, F., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 73–117. [Google Scholar]
- Sha, W.; Wu, X.; Keong, K.G. 8-Electrical resistivity of electroless copper deposit. In Electroless Copper and Nickel–Phosphorus Plating; Sha, W., Wu, X., Keong, K.G., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 117–134. [Google Scholar]
- Hassanien, A.S.; Akl, A.A. Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J. Non Cryst. Solids 2016, 432, 471–479. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016, 89, 153–169. [Google Scholar] [CrossRef]
- Santos, T.G. 5-Characterization of FSP by electrical conductivity. In Surface Modification by Solid State Processing; Miranda, R., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 153–176. [Google Scholar]
- Singh, Y. Electrical Resistivity Measurements: A review. Int. J. Mod. Phys. Conf. Ser. 2013, 22, 745–756. [Google Scholar] [CrossRef]
- Ehrstein, J.R. Two-Probe (Spreading Resistance) Measurements for Evaluation of Semiconductor Materials and Devices. In Nondestructive Evaluation of Semiconductor Materials and Devices; Zemel, J.N., Ed.; Springer: Boston, MA, USA, 1979; pp. 1–66. [Google Scholar]
- Jeong, S.; Yoo, D.; Jang, J.-T.; Kim, M.; Cheon, J. Well-Defined Colloidal 2-D Layered Transition-Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols. J. Am. Chem. Soc. 2012, 134, 18233–18236. [Google Scholar] [CrossRef] [PubMed]
- Grima-Gallardo, P.; Salas, M.; Contreras, O.; Power, C.; Quintero, M.; Cabrera, H.; Zumeta-Dubé, I.; Rodríguez, A.; Aitken, J.; Brämer-Escamilla, W. Cu3TaSe4 and Cu3NbSe4: X-ray diffraction, differential thermal analysis, optical absorption and Raman scattering. J. Alloy. Compd. 2016, 658, 749–756. [Google Scholar] [CrossRef]
- Espinosa-García, W.F.; Valencia-Balvín, C.; Osorio-Guillén, J.M. Phononic and thermodynamic properties of the sulvanite compounds: A first-principles study. Comput. Mater. Sci. 2016, 113, 275–279. [Google Scholar] [CrossRef]
Compound | Synthesis Method | Formation Condition | Shape and Dimension | Performance | |
---|---|---|---|---|---|
Color | Conductivity | ||||
Cu3TaS4 | Solid-state Method [21,26] | 800 °C for 48 h | - | light brown | - |
Cascade | TaS2, 300 °C for 2 h Cu3TaS4, 300°C for 1h | Cubic, ~20 nm | mustard-green | 1.38 × 10−9 S·m−1 | |
Hot injection | 300 °C for 1 h | Cubic, ~15 nm | yellow | ||
Cu3TaSe4 | Solid-state Method [20] | Polycrystalline Powder 880 for 98 h Single crystals 890 for 143 h | Cubic | Orange yellow | - |
Cascade | TaSe2, 305 °C for 1 h Cu3TaSe4, 305 °C for 1h | Cubic, irregular sizes | brown | weak resistance | |
Hot injection | 300 °C for 1 h | Core-shell, ~25 nm | brown | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Lai, C.-Y.; Chang, C.-Y.; Radu, D.R. Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals 2021, 11, 51. https://doi.org/10.3390/cryst11010051
Liu M, Lai C-Y, Chang C-Y, Radu DR. Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals. 2021; 11(1):51. https://doi.org/10.3390/cryst11010051
Chicago/Turabian StyleLiu, Mimi, Cheng-Yu Lai, Chen-Yu Chang, and Daniela R. Radu. 2021. "Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals" Crystals 11, no. 1: 51. https://doi.org/10.3390/cryst11010051
APA StyleLiu, M., Lai, C. -Y., Chang, C. -Y., & Radu, D. R. (2021). Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals, 11(1), 51. https://doi.org/10.3390/cryst11010051