Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microscopy Observation
2.3. Alignment of the LCs at the Air Interface and on Glass Slides
2.4. Fabrication of the Patterned Substrates
2.5. Addition of the LC
2.6. Measurement of the Heights of the Stripes
3. Results and Discussion
3.1. Nematic Cylindric-Section Droplets
3.1.1. Alignment of the LCs at Glass and at Air Interfaces
3.1.2. Droplet Profile/Contact Angle Measurements
3.1.3. Alignment for the De-Wetted Droplets of E7
3.1.4. Alignment for the De-Wetted Droplets of MLC2081
3.1.5. Alignment for the De-Wetted Droplets of MLC6609
3.1.6. Alignment for the De-Wetted droplets of MLC7023
3.2. The Effect of Chirality on Cylindric-Section Droplets
3.2.1. The Effect of Adding a Chiral Dopant on the Alignment of E7.
3.2.2. The Effect of Adding Water to These De-Wetted Droplets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chigrinov, V.G. Liquid Crystal Devices: Physics and Applications; Artech House: Boston, MA, USA, 1999. [Google Scholar]
- Part I Display Devices. In Handbook of Liquid Crystals, Applications of Liquid Crystals; Goodby, J.W.; Collings, P.J.; Kato, T.; Tschierske, C.; Gleeson, H.F.; Raynes, P.; Vill, V. (Eds.) Wiley-VCH: Weinheim, Germany, 2014; Volume 8. [Google Scholar]
- Jones, J.C. LC Displays. In Handbook of Optoelectronics: Enabling Technologies, 2nd ed.; Dakin, J.P., Brown, R.G.W., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 2. [Google Scholar]
- Bushby, R.J.; Kawata, K. Liquid crystals that affected the world: Discotic liquid crystals. Liq. Cryst. 2011, 38, 1415–1426. [Google Scholar] [CrossRef]
- Yan, J.; Rey, A.D. Texture formation in carbonaceous mesophase fibers. Phys. Rev. E 2002, 65, 031713. [Google Scholar] [CrossRef]
- Yan, J.; Rey, A.D. Modeling elastic and viscous effects on the texture of ribbon-shaped carbonaceous mesophase fibers. Carbon 2003, 41, 105–121. [Google Scholar] [CrossRef]
- Collyer, A.A. Lyotropic liquid-crystal polymers for engineering applications. Mater. Sci. Technol. 1990, 6, 981–992. [Google Scholar] [CrossRef]
- Carlton, R.J.; Hunter, J.T.; Miller, D.S.; Abbasi, R.; Mushenheim, P.C.; Tan, L.N.; Abbott, N.L. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev. 2013, 1, 29–51. [Google Scholar] [CrossRef]
- Sargazi, M.; Linford, M.R.; Kaykhaii, M. Liquid Crystals in Analytical Chemistry: A Review. Crit. Rev. Anal. Chem. 2019, 49, 243–255. [Google Scholar] [CrossRef]
- Cronin, T. Biosensors and Liquid Crystals. In Handbook of Liquid Crystals; Goodby, J.W., Collings, P.J., Kato, T., Tschierske, C., Gleeson, H.F., Raynes, P., Vill, V., Eds.; Wiley-VCH: Weinheim, Germany, 2014; Volume 8, pp. 909–929. [Google Scholar]
- Brake, J.M.; Daschner, M.K.; Luk, Y.-Y.; Abbott, N.L. Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals. Science 2003, 302, 2094. [Google Scholar] [CrossRef]
- Guzmán, O.; Abbott, N.L.; de Pablo, J.J. Quenched disorder in a liquid-crystal biosensor: Adsorbed nanoparticles at confining walls. J. Chem. Phys. 2005, 122, 184711. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Khan, A.R.; Shin, J.-H.; Park, S.-Y. A liquid-crystal-based DNA biosensor for pathogen detection. Sci. Rep. 2016, 6, 22676. [Google Scholar] [CrossRef] [Green Version]
- Popov, P.; Mann, E.K.; Jákli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B 2017, 5, 5061–5078. [Google Scholar] [CrossRef]
- Su, X.; Huo, W.; Yang, D.; Luan, C.; Xu, J. Label-free liquid crystal immunosensor for detection of HBD-2. Talanta 2019, 203, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Chandran, A.; Joshi, T.; Prakash, J.; Agrawal, V.V.; Biradar, A.M. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection. Appl. Phys. Lett. 2014, 104, 154104. [Google Scholar] [CrossRef] [Green Version]
- Bao, P.; Paterson, D.A.; Harrison, P.L.; Miller, K.; Peyman, S.; Jones, J.C.; Sandoe, J.; Evans, S.D.; Bushby, R.J.; Gleeson, H.F. Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab A Chip 2019, 19, 1082–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-G.; Munir, S.; Park, S.-Y. Cholesteric Liquid Crystal Droplets for Biosensors. ACS Appl. Mater. Interfaces 2016, 8, 26407–26417. [Google Scholar] [CrossRef]
- Manna, U.; Zayas-Gonzalez, Y.M.; Carlton, R.J.; Caruso, F.; Abbott, N.L.; Lynn, D.M. Liquid Crystal Chemical Sensors That Cells Can Wear. Angew. Chem. Int. Ed. 2013, 52, 14011–14015. [Google Scholar] [CrossRef]
- Paterson, D.A.; Bao, P.; Abou-Saleh, R.H.; Peyman, S.A.; Jones, J.C.; Sandoe, J.A.T.; Evans, S.D.; Gleeson, H.F.; Bushby, R.J. Control of Director Fields in Phospholipid-Coated Liquid Crystal Droplets. Langmuir 2020, 36, 6436–6446. [Google Scholar] [CrossRef]
- Gupta, V.K.; Abbott, N.L. Using Droplets of Nematic Liquid Crystal to Probe the Microscopic and Mesoscopic Structure of Organic Surfaces. Langmuir 1999, 15, 7213–7223. [Google Scholar] [CrossRef]
- Kulkarni, S.; Thareja, P. Experimental study of surfactant driven nematic liquid crystal (NLC) anchoring transitions at solid surfaces: Role of solid surface energy and anisotropic NLC—solid interfacial energy. J. Adhes. Sci. Technol. 2016, 30, 1371–1390. [Google Scholar] [CrossRef]
- Shah, R.R.; Heinrichs, D.M.; Abbott, N.L. Meso-scale imaging of patterned surfaces by decoration with liquid crystals. Colloids Surf. A Physicochem. Eng. Asp. 2000, 174, 197–208. [Google Scholar] [CrossRef]
- Bao, P.; Paterson, D.A.; Peyman, S.A.; Jones, J.C.; Sandoe, J.A.T.; Gleeson, H.F.; Evans, S.D.; Bushby, R.J. Production of Giant Unilamellar Vesicles and Encapsulation of Nematic Lyotropic Liquid Crystals. Soft Matter 2020, in press. [Google Scholar]
- Esteves, C.; Ramou, E.; Porteira, A.R.P.; Barbosa, A.J.M.; Roque, A.C.A. Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. Adv. Opt. Mater. 2020, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Bramble, J.P.; Tate, D.J.; Revill, D.J.; Sheikh, K.H.; Henderson, J.R.; Liu, F.; Zeng, X.; Ungar, G.; Bushby, R.J.; Evans, S.D. Planar Alignment of Columnar Discotic Liquid Crystals by Isotropic Phase Dewetting on Chemically Patterned Surfaces. Adv. Funct. Mater. 2010, 20, 914–920. [Google Scholar] [CrossRef]
- Knight, D.P.; Vollrath, F. Comparison of the Spinning of Selachian Egg Case Ply Sheets and Orb Web Spider Dragline Filaments. Biomacromolecules 2001, 2, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Lydon, J.E. Silk: The original liquid crystalline polymer. Liq. Cryst. Today 2004, 13, 1–13. [Google Scholar] [CrossRef]
- Gupta, J.K.; Sivakumar, S.; Caruso, F.; Abbott, N.L. Size-Dependent Ordering of Liquid Crystals Observed in Polymeric Capsules with Micrometer and Smaller Diameters. Angew. Chem. Int. Ed. 2009, 48, 1652–1655. [Google Scholar] [CrossRef]
- Smondyrev, A.M.; Pelcovits, R.A. Nematic structures in cylindrical cavities. Liq. Cryst. 1999, 26, 235–240. [Google Scholar] [CrossRef]
- Crawford, G.P.; Mitcheltree, J.A.; Boyko, E.P.; Fritz, W.; Zumer, S.; Doane, J.W. K-33/k-11 determination in nematic liquid-crystals—An optical birefringence technique. Appl. Phys. Lett. 1992, 60, 3226–3228. [Google Scholar] [CrossRef]
- Shams, A.; Yao, X.; Park, J.O.; Srinivasarao, M.; Rey, A.D. Theoretical predictions of disclination loop growth for nematic liquid crystals under capillary confinement. Phys. Rev. E 2014, 90, 042501. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, C.F.; Rudquist, P.; Lorenz, K.; Giesselmann, F. Chiral Structures from Achiral Micellar Lyotropic Liquid Crystals under Capillary Confinement. Langmuir 2017, 33, 5852–5862. [Google Scholar] [CrossRef]
- Bunning, J.D.; Lydon, J.E. The cellular optical texture of the lyotropic nematic phase of the caesium pentadecafluoro-octanoate (CsPFO)/water system in cylindrical tubes. Liq. Cryst. 1996, 20, 381–385. [Google Scholar] [CrossRef]
- Ellis, P.W.; Klanecek, S.; Fernandez-Nieves, A. Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Phys. Rev. E 2020, 101, 9. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Pierański, P.; Cladis, P.E. Nonsingular S = +1 Screw Disclination Lines in Nematics. Phys. Rev. Lett. 1972, 29, 90–92. [Google Scholar] [CrossRef]
- Crawford, G.P.; Vilfan, M.; Doane, J.W.; Vilfan, I. Escaped-radial nematic configuration in submicrometer-size cylindrical cavities: Deuterium nuclear-magnetic-resonance study. Phys. Rev. A 1991, 43, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Vilfan, I.; Vilfan, M.; Žumer, S. Defect structures of nematic liquid crystals in cylindrical cavities. Phys. Rev. A 1991, 43, 6875–6880. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kang, L.; Davidson, Z.S.; Collings, P.J.; Lubensky, T.C.; Yodh, A.G. Chiral structures from achiral liquid crystals in cylindrical capillaries. Proc. Natl. Acad. Sci. USA 2015, 112, E1837–E1844. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.B. On the existence of even indexed disclinations in nematic liquid crystals. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1973, 27, 405–424. [Google Scholar] [CrossRef]
- Kralj, S.; Žumer, S. Saddle-splay elasticity of nematic structures confined to a cylindrical capillary. Phys. Rev. E 1995, 51, 366–379. [Google Scholar] [CrossRef]
- Alkhairalla, B.; Boden, N.; Cheadle, E.; Evans, S.D.; Henderson, J.R.; Fukushima, H.; Miyashita, S.; Schönherr, H.; Vancso, G.J.; Colorado, R.; et al. Anchoring and orientational wetting of nematic liquid crystals on semi-fluorinated self-assembled monolayer surfaces. Europhys. Lett. 2002, 59, 410–416. [Google Scholar] [CrossRef]
- Kariyasaki, A.; Yamasaki, Y.; Kagawa, M.; Nagashima, T.; Ousaka, A.; Morooka, S. Measurement of Liquid Film Thickness by a Fringe Method. Heat Transf. Eng. 2009, 30, 28–36. [Google Scholar] [CrossRef]
- Hartshorne, N.H.; Stuart, A. Crystals and the Polarising Microscope, 4th ed.; Arnold: London, UK, 1970. [Google Scholar]
- Yu, T.-C.; Lo, Y.L.; Huang, R.-R. Determination of azimuthal anchoring strength in twisted nematic liquid crystal cells using heterodyne polarimeter. Opt. Express 2010, 18, 21169–21182. [Google Scholar] [CrossRef]
- Kitzerow, H.S.; Liu, B.; Xu, F.; Crooker, P.P. Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring. Phys. Rev. E 1996, 54, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Park, S.-Y. Specific detection of avidin–biotin binding using liquid crystal droplets. Colloids Surf. B Biointerfaces 2015, 127, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Park, S.-Y. General Liquid-crystal droplets produced by microfluidics for urea detection. Sens. Actuators B Chem. 2014, 202, 516–522. [Google Scholar] [CrossRef]
- Niu, X.; Luo, D.; Chen, R.; Wang, F.; Sun, X.; Dai, H. Optical biosensor based on liquid crystal droplets for detection of cholic acid. Opt. Commun. 2016, 381, 286–291. [Google Scholar] [CrossRef]
- Gleeson, H.F.; Wood, T.A.; Dickinson, M. Laser manipulation in liquid crystals: An approach to microfluidics and micromachines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2789–2805. [Google Scholar] [CrossRef]
- Yang, Y.; Brimicombe, P.D.; Roberts, N.W.; Dickinson, M.R.; Osipov, M.; Gleeson, H.F. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt. Express 2008, 16, 6877–6882. [Google Scholar] [CrossRef]
- Bezić, J.; Žumer, S. Structures of the cholesteric liquid crystal droplets with parallel surface anchoring. Liq. Cryst. 1992, 11, 593–619. [Google Scholar] [CrossRef]
- Xu, F.; Crooker, P.P. Chiral nematic droplets with parallel surface anchoring. Phys. Rev. E 1997, 56, 6853–6860. [Google Scholar] [CrossRef]
- Zhang, R.B.; Zeng, X.B.; Kim, B.; Bushby, R.J.; Shin, K.; Baker, P.J.; Percec, V.; Leowanawat, P.; Ungar, G. Columnar Liquid Crystals in Cylindrical Nanoconfinement. ACS Nano 2015, 9, 1759–1766. [Google Scholar] [CrossRef] [Green Version]
Material | TNI a (°C) | Δn b (589.6 nm) | Δε a (2 kHz) | K11 a (pN) | K33 a (pN) | Interface Alignment (25 °C) | |
---|---|---|---|---|---|---|---|
Air/LC | Clean Glass/LC | ||||||
E7 | 60.5 | 0.22 | +14.1 | 11 | 17 | Perpendicular | Planar/Tilted |
MLC2081 | 106.0 | 0.20 | −3.8 | 14 | 20 | Perpendicular /Tilted | Planar/Tilted |
MLC6609 | 91.5 | 0.08 | −3.3 | 15 | 16 | Perpendicular | Perpendicular |
MLC7023 | 79.5 | 0.06 | +6.6 | 11 | 13 | Planar/Tilted | Planar/Tilted |
Liquid Crystal Mixture | nav | r (μm) | Stripe Height, h (μm) | Average Contact Angle θ (°) |
---|---|---|---|---|
E7 | 1.58 | 93 ± 10 | 1.22 ± 0.13 | 9.3 ± 1.0 |
MLC2081 | - | - | >2 * | >15 * |
MLC6609 | 1.48 † | 68 ± 4 † | 1.68 ± 0.10 † | 12.8 ± 0.8 † |
MLC7023 | 1.49 (1.50) ‡ | 56 ± 2 (57 ± 2) ‡ | 2.04 ± 0.10 (2.02 ± 0.10) ‡ | 15.5 ± 0.8 (15.4 ± 0.8) ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, P.; Paterson, D.A.; Peyman, S.A.; Jones, J.C.; Sandoe, J.A.T.; Bushby, R.J.; Evans, S.D.; Gleeson, H.F. Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces. Crystals 2021, 11, 65. https://doi.org/10.3390/cryst11010065
Bao P, Paterson DA, Peyman SA, Jones JC, Sandoe JAT, Bushby RJ, Evans SD, Gleeson HF. Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces. Crystals. 2021; 11(1):65. https://doi.org/10.3390/cryst11010065
Chicago/Turabian StyleBao, Peng, Daniel A. Paterson, Sally A. Peyman, J. Cliff Jones, Jonathan A. T. Sandoe, Richard J. Bushby, Stephen D. Evans, and Helen F. Gleeson. 2021. "Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces" Crystals 11, no. 1: 65. https://doi.org/10.3390/cryst11010065
APA StyleBao, P., Paterson, D. A., Peyman, S. A., Jones, J. C., Sandoe, J. A. T., Bushby, R. J., Evans, S. D., & Gleeson, H. F. (2021). Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces. Crystals, 11(1), 65. https://doi.org/10.3390/cryst11010065