Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dye Sorption Experiment
2.3. Instrumental Analyses
2.4. Molecular Dynamic Simulation
3. Results and Discussion
3.1. Subsection
Isotherms of Dye Sorption from Single and Binary Solution
3.2. Kinetics of Dye Sorption from Single and Binary Solution
3.3. Influence of Solution pH, Ionic Strength, and Temperature on Dye Sorption
3.4. XRD Analyses
3.5. FTIR Analyses
3.6. Counterion Cl− Uptake Accompanying Dye Sorption
3.7. Molecular Dynamic Simulation
3.8. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leif, R.; Rezma, S.; Hafiane, A. Removal of toluidine blue from aqueous solution using orange peel waste (OPW). Desalin. Water Treat. 2015, 56, 2754–2765. [Google Scholar]
- Fosso-Kankeu, E.; Potgieter, J.; Waanders, F.B. Removal of malachite green and toluidine blue dyes from aqueous solution using a clay-biochar composite of bentonite and sweet sorghum bagasse. Inter. J. Appl. Engineer. Res. 2019, 14, 1324–1333. [Google Scholar]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Engineer. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- McKay, G.; Porter, J.F.; Prasad, G.R. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut. 1999, 114, 423–438. [Google Scholar] [CrossRef]
- Olajire, A.A.; Giwa, A.A.; Bello, I.A. Competitive adsorption of dye species from aqueous solution onto melon husk in single and ternary dye systems. Inter. J. Environ. Sci. Technol. 2015, 12, 939–950. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, G.; Lazzara, G.; Rozhina, E.; Konnova, S.; Kryuchkova, M.; Khaertdinov, N.; Fakhrullin, R. Organic-nanoclay composite materials as removal agents for environmental decontamination. RSC Adv. 2019, 9, 40553–40564. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.M.A.; Saad, H.A.; Atta, A.A.; Alsawat, M.; Hegab, M.S.; Refat, M.S.; Altalhi, T.A.; Alosaimi, E.H.; Younes, A.A. Preparation and characterization of new CrFeO3-carbon composite using environmentally friendly methods to remove organic dye pollutants from aqueous solutions. Crystals 2021, 11, 960. [Google Scholar] [CrossRef]
- Su, X.; Liu, L.; Zhang, Y.; Liao, Q.; Yu, Q.; Meng, R.; Yao, J. Efficient Removal of Cationic and Anionic Dyes from Aqueous Solution Using Cellulose-gp (AA-co-AM) Bio-Adsorbent. Bioresources 2017, 12, 3413–3424. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.T.; Lee, W.N.; Keng, P.S.; Hung, Y.T.; Ha, S.T. Equilibrium studies and kinetics mechanism for the removal of basic and reactive dyes in both single and binary systems using EDTA modified rice husk. Inter. J. Phys. Sci. 2010, 5, 582–595. [Google Scholar]
- Idan, I.J.; Jamil, S.N.A.B.M.; Abdullah, L.C.; Choong, T.S.Y. Removal of reactive anionic dyes from binary solutions by adsorption onto quaternized kenaf core fiber. Inter. J. Chem. Engineer. 2017, 2017, 9792657. [Google Scholar] [CrossRef]
- Kaushal, S.; Badru, R.; Kumar, S.; Kaur, H.; Singh, P. Efficient removal of cationic and anionic dyes from their binary mixtures by organic–inorganic hybrid material. J. Inorg. Organomet. Polym. Mater. 2018, 28, 968–977. [Google Scholar] [CrossRef]
- Cohen, R.; Yariv, S. Metachromasy in clay minerals. Sorption of acridine orange by montmorillonite. J. Chem. Soc. Faraday Trans. 1 1984, 80, 1705–1715. [Google Scholar] [CrossRef]
- Grauer, Z.; Malter, A.B.; Yariv, S.; Avnir, D. Sorption of rhodamine B by montmorillonite and laponite. Colloid. Surf. 1987, 25, 41–65. [Google Scholar] [CrossRef]
- Cenens, J.; Schoonheydt, R.A. Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays Clay Miner. 1988, 36, 214–224. [Google Scholar] [CrossRef]
- El Haouti, R.; Ouachtak, H.; El Guerdaoui, A.; Amedlous, A.; Amaterz, E.; Haounati, R.; Addi, A.A.; Akbal, F.; El Alem, N.; Taha, M.L. Cationic dyes adsorption by Na-Montmorillonite Nano Clay: Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J. Mol. Liq. 2019, 290, 111139. [Google Scholar] [CrossRef]
- Peinemann, N.; Helmy, A.K. Cation exchange capacities of safranin, toluidine and alizarin complexes with montmorillonite. Soil Sci. 1999, 164, 650–654. [Google Scholar] [CrossRef]
- Özdemir, A.; Keskin, C.S. Removal of a binary dye mixture of congo red and malachite green from aqueous solutions using a bentonite adsorbent. Clays Clay Miner. 2009, 57, 695–705. [Google Scholar] [CrossRef]
- Shirazi, E.K.; Metzger, J.W.; Fischer, K.; Hassani, A.H. Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 598, 124807. [Google Scholar] [CrossRef]
- Rohani, T.; Seyedghasemi, M.S. Application of surfactant-coated magnetic zeolite NAA as a new sorbent to remove Safranin O dye from aqueous solutions. Bulg. Chem. Commun. 2017, 323–328. [Google Scholar]
- Alpat, S.K.; Özbayrak, Ö.; Alpat, Ş.; Akçay, H. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. J. Hazard. Mater 2008, 151, 213–220. [Google Scholar] [CrossRef]
- Qiu, M.; Qian, C.; Xu, J.; Wu, J.; Wang, G. Studies on the adsorption of dyes into clinoptilolite. Desalination 2009, 243, 286–292. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mohamed, A.S. Adsorption removal of safranin dye contaminants from water using various types of natural zeolite. Silicon. 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Sismanoglu, T.; Kismir, Y.; Karakus, S. Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. J. Hazard. Mater. 2010, 184, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, G.; Shankar, A.A. Toluidine blue: A review of its chemistry and clinical utility. J. Oral Maxillofac. Pathol. 2012, 16, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Rani, S.; Mahajan, R.K.; Asif, M.; Gupta, V.K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Engineer. Chem. 2015, 22, 19–27. [Google Scholar] [CrossRef]
- Thabet, M.S.; Ismaiel, A.M. Saudi Arabia Natural Clay: Characterization, Equilibrium, Kinetics and Thermodynamics Models for Elimination of Textile Dyes. Int. J. Environ. Monit. Protect. 2018, 5, 31–39. [Google Scholar]
- Gomez, V.; Larrechi, M.S.; Callao, M.P. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 2007, 69, 1151–1158. [Google Scholar] [CrossRef]
- Amin, N.K. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 2008, 223, 152–161. [Google Scholar] [CrossRef]
- Salim, H.A.M.; Salih, S.A.M. Photodegradation study of Toluidine Blue dye in aqueous solution using magnesium oxide as a photocatalyst. Int. J. Chem. 2015, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Bekkouche, S.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M. Efficient photocatalytic degradation of Safranin O by integrating solar-UV/TiO2/persulfate treatment: Implication of sulfate radical in the oxidation process and effect of various water matrix components. J. Photochem. Photobiol. A Chem. 2017, 345, 80–91. [Google Scholar] [CrossRef]
- Harris, R.G.; Wells, J.D.; Johnson, B.B. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf. A Physicochem. Eng. Aspects. 2001, 180, 131–140. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407–2412. [Google Scholar] [CrossRef]
- Rauf, M.A.; Qadri, S.M.; Ashraf, S.; Al-Mansoori, K.M. Adsorption studies of Toluidine Blue from aqueous solutions onto gypsum. Chem. Engineer. J. 2009, 150, 90–95. [Google Scholar] [CrossRef]
- Manna, S.; Das, P.; Roy, D. Dye-Containing Wastewater Treatment Using Treated Jute. In Waste Management and Resource Efficiency; Springer: Singapore, 2019; pp. 1263–1270. [Google Scholar]
- Zhao, F.; Sillanpää, M. Cross-linked chitosan and β-cyclodextrin as functional adsorbents in water treatment. In Advanced Water Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–264. [Google Scholar]
- Sieren, B.; Baker, J.; Wang, X.; Rozzoni, S.J.; Carlson, K.; McBain, A.; Kerstan, D.; Allen, L.; Liao, L.; Li, Z. Sorptive Removal of Color Dye Safranin O by Fibrous Clay Minerals and Zeolites. Adv. Mater. Sci. Engineer. 2020, 8845366. [Google Scholar]
- Wu, Q.; Carlson, K.; Cheng, Q.; Wang, X.; Li, Z. Interactions between Cationic Dye Toluidine Blue and Fibrous Clay Minerals. Crystals 2021, 11, 708. [Google Scholar] [CrossRef]
- Yazdani, M.; Mohammad Mahmoodi, N.; Arami, M.; Bahrami, H. Isotherm, kinetic, and thermodynamic of cationic dye removal from binary system by Feldspar. Separat. Sci. Technol. 2012, 47, 1660–1672. [Google Scholar] [CrossRef]
- Taha, D.N.; Samaka, I.A.S.; Mohammed, L.A. Adsorptive removal of dye from industrial effluents using natural Iraqi palygorskite clay as low-cost adsorbent. J. Asian Sci. Res. 2013, 3, 945–955. [Google Scholar]
- Patel, H.; Vashi, R.T. A study on removal of Toluidine blue dye from aqueous solution by adsorption onto Neem leaf powder. World Acad. Sci. Engineer. Technol. 2010, 70, 831–836. [Google Scholar]
- Rida, K.; Bouraoui, S.; Hadnine, S. Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl. Clay Sci. 2013, 83, 99–105. [Google Scholar] [CrossRef]
- Fayazi, M.; Afzali, D.; Taher, M.A.; Mostafavi, A.; Gupta, V.K. Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: Optimization study. J. Mol. Liq. 2015, 212, 675–685. [Google Scholar] [CrossRef]
- Liu, M.; Shi, G.; Zhang, L.; Zhao, G.; Jin, L. Electrode modified with toluidine blue-doped silica nanoparticles, and its use for enhanced amperometric sensing of hemoglobin. Anal. Bioanal. Chem. 2008, 391, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, H.; Crespan, M.; Cruz, M.I.; Fripiat, J.J. Adsorption of safranine by Na+, Ni2+ and Fe3+ montmorillonites. Clays Clay Miner. 1997, 25, 19–25. [Google Scholar] [CrossRef]
- Nasher, M.A.; Youssif, M.I.; El-Ghamaz, N.A.; Zeyada, H.M. Linear and nonlinear optical properties of irradiated Toluidine Blue thin films. Optik 2019, 178, 532–543. [Google Scholar] [CrossRef]
- D'Ilario, L.; Martinelli, A. Toluidine blue: Aggregation properties and structural aspects. Model. Simul. Mater. Sci. Engineer. 2006, 14, 581–589. [Google Scholar] [CrossRef]
- Usacheva, M.N.; Teichert, M.C.; Biel, M.A. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J. Photochem. Photobiol. B Biol. 2003, 71, 87–98. [Google Scholar] [CrossRef]
- EL-Mekkawi, D.M.; Ibrahim, F.A.; Selim, M.M. Removal of methylene blue from water using zeolites prepared from Egyptian kaolins collected from different sources. J. Environ. Chem. Engineer. 2016, 4, 1417–1422. [Google Scholar] [CrossRef]
- Gilani, A.G.; Dezhampanah, H.; Poormohammadi-Ahandani, Z. A comparative spectroscopic study of thiourea effect on the photophysical and molecular association behavior of various phenothiazine dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 132–143. [Google Scholar] [CrossRef]
- Antonov, L.; Gergov, G.; Petrov, V.; Kubista, M.; Nygren, J. UV–Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 1999, 49, 99–106. [Google Scholar] [CrossRef]
- Matassa, R.; Sadun, C.; D'Ilario, L.; Martinelli, A.; Caminiti, R. Supramolecular organization of toluidine blue dye in solid amorphous phases. J. Phys. Chem. B 2007, 111, 1994–1999. [Google Scholar] [CrossRef]
Systems | TB from Binary Solution | SO from Binary Solution | Sum of TB + SO from Binary Solution | TB from Single Solution | SO from Single Solution ¶ |
---|---|---|---|---|---|
Sm (mmol/kg) | 63 ± 2 | 33 ± 2 | 96 ± 3 | 126 ± 2 | 79 ± 2 |
KL (L/mmol) | 170 ± 4 | 122 ± 6 | 66 ± 2 | 333 ± 8 | 1808 ± 120 |
qe (mmol/kg) | 48 ± 1 | 43 ± 1 | 90 ± 1 | 96 ± 1 | 76 ± 2 |
kqe 2 (mmol/kg-h) | 164 ± 30 | 54 ± 14 | 181 ± 40 | 595 ± 80 | 213 ± 30 |
k (kg/mmol-h) | 0.07 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.005 | 0.1 ± 0.001 | 0.04 ± 0.01 |
Minerals | ∆G° (kJ/mol) | ∆H° | ∆S° | |||
---|---|---|---|---|---|---|
296 K | 306 K | 316 K | 326 K | (kJ/mol) | (kJ/mol-K) | |
TB | −18 ± 15 | −20 ± 15 | −22 ± 15 | −24 ± 15 | 37 ± 7 | 0.19 ± 0.03 |
SO | −12 ± 17 | −14 ± 17 | −16 ± 17 | −18 ± 17 | 37 ± 8 | 0.17 ± 0.04 |
TB + SO | −14 ± 16 | −16 ± 16 | −18 ± 16 | −19 ± 16 | 36 ± 9 | 0.17 ± 0.03 |
TB single | −24 ± 11 | −24 ± 11 | −24 ± 11 | −24 ± 11 | −19 ± 5 | 0.02 ± 0.02 |
SO single ¶ | −15.7 ± 0.1 | −15.5 ± 0.1 | −15.3 ± 0.1 | −15.0 ± 0.2 | −22 ± 4 | −0.02 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, X.; Wang, X.; Carlson, K.; Li, Z. Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite. Crystals 2021, 11, 1181. https://doi.org/10.3390/cryst11101181
Shi Y, Wang X, Wang X, Carlson K, Li Z. Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite. Crystals. 2021; 11(10):1181. https://doi.org/10.3390/cryst11101181
Chicago/Turabian StyleShi, Yan, Xisen Wang, Xin Wang, Kristen Carlson, and Zhaohui Li. 2021. "Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite" Crystals 11, no. 10: 1181. https://doi.org/10.3390/cryst11101181
APA StyleShi, Y., Wang, X., Wang, X., Carlson, K., & Li, Z. (2021). Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite. Crystals, 11(10), 1181. https://doi.org/10.3390/cryst11101181