Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data
Abstract
:1. Introduction
2. Theory
3. Experimental Methods
4. Results and Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
Greek Letters |
References
- Mullin, J.W. Crystallization, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1993. [Google Scholar]
- Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Kashchiev, D.; van Rosmalen, G.M. Review: Nucleation in solutions revisited. Cryst. Res. Technol. 2003, 38, 555–574. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Srinivasan, P. Nucleation control, separation and bulk growth of metastable α-l-glutamic acid single crystals in the presence of l-tyrosine. J. Cryst. Growth. 2013, 364, 23–29. [Google Scholar] [CrossRef]
- Peng, J.; Dong, Y.; Wang, L.; Li, L.L.; Li, W.; Feng, H. Effect of impurities on the solubility, metastable zone width, and nucleation kinetics of borax decahydrate. Ind. Eng. Chem. Res. 2014, 53, 12170–12178. [Google Scholar] [CrossRef]
- Siepermann, C.A.P.; Huang, S.; Myerson, A.S. Nucleation inhibition of benzoic acid through solution complexation. Cryst. Growth Des. 2017, 17, 2646–2653. [Google Scholar] [CrossRef]
- Yang, L.; Cao, J.; Luo, T. Effect of Mg2+, Al3+, and Fe3+ ions on crystallization of type α hemi-hydrated calcium sulfate under simulated conditions of hemi-hydrate process of phosphoric acid. J. Cryst. Growth 2018, 486, 30–37. [Google Scholar] [CrossRef]
- Heffernan, C.; Ukrainczyk, M.; Zeglinski, J.; Hodnett, B.K.; Rasmuson, A.C. Influence of structurally related impurities on the crystal nucleation of curcumin. Cryst. Growth Des. 2018, 18, 4715–4723. [Google Scholar] [CrossRef]
- Su, N.; Wang, Y.; Xiao, Y.; Lu, H.; Lou, Y.; Huang, J.; He, J.; Li, Y.; Hao, H. Mechanism of influence of organic impurity on crystallization of sodium sulfate. Ind. Eng. Chem. Res. 2018, 57, 1705–1713. [Google Scholar] [CrossRef]
- Bodnar, K.; Hudson, S.P.; Rasmuson, A.C. Promotion of mefenamic acid nucleation by a surfactant additive, docusate sodium. Cryst. Growth Des. 2019, 19, 591–603. [Google Scholar] [CrossRef]
- Keshavarz, L.; Steendam, R.R.E.; Blijlevens, M.A.R.; Pishnamazi, M.; Frawley, P.J. Influence of impurities on the solubility, nucleation, crystallization, and compressibility of paracetamol. Cryst. Growth Des. 2019, 19, 4193–4201. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, J.; Chen, H.; Du, W.; Wang, X. Effects of succinic acid and adipic acid on the metastable width of glutaric acid in acetic acid. J. Cryst. Growth. 2019, 507, 1–9. [Google Scholar] [CrossRef]
- Chen, J.; Peng, J.; Wang, X.; Dong, Y.; Li, W. Effects of CO32− and OH− on the solubility, metastable zone width and nucleation kinetics of borax decahydrate. R. Soc. Open Sci. 2019, 6, 181862. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Liu, C.; Song, X.; Yu, J. Effects of Al2(SO4)3 and K2SiO3 impurities on the crystallization of K2SO4 from aqueous solutions. Cryst. Res. Technol. 2021, 56, 2000052. [Google Scholar] [CrossRef]
- Kubota, N. A new interpretation of metastable zone widths measured for unseeded solutions. J. Cryst. Growth 2008, 310, 629–634. [Google Scholar] [CrossRef]
- Sangwal, K. Effects of impurities on the metastable zone width of solute-solvent systems. J. Cryst. Growth 2009, 311, 4050–4061. [Google Scholar] [CrossRef]
- Shiau, L.D.; Lu, T.S. A model for determination of the interfacial energy from the measured metastable zone width by the polythermal method. J. Cryst. Growth 2014, 402, 267–272. [Google Scholar] [CrossRef]
- Shiau, L.D.; Lu, T.S. A model for determination of the interfacial energy from the induction time or metastable zone width data based on turbidity measurements. CrystEngComm 2014, 16, 9743–9752. [Google Scholar] [CrossRef]
- Yang, H.; Florence, A.J. Relating induction time and metastable zone width. CrystEngComm 2017, 19, 3966–3978. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Si, A.; Yan, Y.; Zhang, X.; Yang, H. Interaction of metastable zone width and induction time based on nucleation potential. Ind. Eng. Chem. Res. 2020, 59, 22597–22604. [Google Scholar]
- Shiau, L.D.; Wu, D.R. Effect of l-valine impurity on the nucleation parameters of aqueous l-glutamic acid solutions from metastable zone width. J. Cryst. Growth 2020, 546, 125790. [Google Scholar] [CrossRef]
- Chu, G.; Vilensky, R.; Vasilyev, G.; Martin, P.; Zhang, R.; Zussman, E. Structure evolution and drying dynamics in sliding cholesteric cellulose nanocrystals. J. Phys. Chem. Lett. 2018, 9, 1845–1851. [Google Scholar] [CrossRef]
- Khadem, S.A.; Rey, A.D. Nucleation and growth of cholesteric collagen tactoids: A time-series statistical analysis based on integration of direct numerical simulation (DNS) and long short-term memory recurrent neural network (LSTM-RNN). J. Colloid Interface Sci. 2021, 582, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Towler, C.S.; Davey, R.J.; Lancaster, R.W.; Price, C.J. Impact of molecular speciation on crystal nucleation in polymorphic systems: the conundrum of γ glycine and molecular ‘self-poisoning’. J. Am. Chem. Soc. 2004, 126, 13347–13353. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Garetz, B.A.; Myerson, A.S. Supersaturation and polarization dependence of polymorph control in the nonphotochemical laser-induced nucleation(NPLIN) of aqueous glycine solutions. Cryst. Growth Des. 2006, 6, 684–689. [Google Scholar] [CrossRef]
- Bouchard, A.; Hofland, G.W.; Witkamp, G.J. Solubility of glycine polymorphs and recrystallization of β-glycine. J. Chem. Eng. Data 2007, 52, 1626–1629. [Google Scholar] [CrossRef]
- Srinivasan, P.; Indirajith, R.; Gopalakrishnan, R. Growth and characterization of α and γ-glycine single crystals. J. Cryst. Growth 2011, 318, 762–767. [Google Scholar] [CrossRef]
- Han, G.; Chow, P.S.; Tan, R.B.H. Direct comparison of α- and γ-glycine growth rates in acidic and basic solutions: New insights into glycine polymorphism. Cryst. Growth Des. 2012, 12, 2213–2220. [Google Scholar] [CrossRef]
- Yani, Y.; Chow, P.S.; Tan, R.B.H. Glycine open dimers in solution: New insights into α-glycine nucleation and growth. Cryst. Growth Des. 2012, 12, 4771–4778. [Google Scholar] [CrossRef]
- Devi, K.R.; Srinivasan, K. A novel approach to understand the nucleation kinetics of α and γ polymorphs of glycine from aqueous solution in the presence of a selective additive through charge compensation mechanism. CrystEngComm 2014, 16, 707–722. [Google Scholar] [CrossRef]
- Shiau, L.D. Comparison of the interfacial energy and pre-exponential factor calculated from the induction time and metastable zone width data based on classical nucleation theory. J. Cryst. Growth 2016, 450, 50–55. [Google Scholar] [CrossRef]
- Jiang, S.; ter Horst, J.H. Crystal nucleation rates from probability distributions of induction times. Cryst. Growth Des. 2011, 11, 256–261. [Google Scholar] [CrossRef]
- Kadam, S.S.; Kramer, H.J.M.; ter Horst, J.H. Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst. Growth Des. 2011, 11, 1271–1277. [Google Scholar] [CrossRef]
- Kadam, S.S.; Kulkarni, S.A.; Coloma Ribera, R.; Stankiewicz, A.I.; ter Horst, J.H. A new view on the metastable zone width during cooling crystallization. Chem. Eng. Sci. 2012, 72, 10–19. [Google Scholar] [CrossRef]
- Green, D.W.; Perry, R.H. Perry’s Chemical Engineers’ Handbook, 8th ed.; McGraw Hill Book Company: New York, NY, USA, 2008. [Google Scholar]
- Park, K.; Evans, J.M.B.; Myerson, A.S. Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry. Cryst. Growth Des. 2003, 3, 991–995. [Google Scholar] [CrossRef]
- Murli, C.; Thomas, S.; Venkateswaran, S.; Sharma, S.M. Raman spectroscopic investigation of α-glycine at different temperatures. Phys. B 2005, 364, 233–238. [Google Scholar] [CrossRef]
0 | 27 (5.9) | 14 (2.8) | 8.3 (2.5) | 4.4 (2.0) |
2 | 62 (15) | 33 (7.3) | 16 (4.6) | 8.2 (2.5) |
5 | 107 (17) | 48 (8.9) | 23 (5.1) | 12 (3.0) |
10 | 154 (21) | 62 (11) | 31(8.8) | 16(4.7) |
0 | 135 (14) | 153 (16) | 177 (16) | 236 (19) |
2 | 127 (12) | 144 (13) | 195 (17) | 221 (17) |
5 | 141 (13) | 159 (15) | 182 (16) | 232 (17) |
10 | 146 (15) | 163 (14) | 188 (18) | 241 (22) |
0 | 6.9 (1.6) | 8.5 (1.7) | 9.1 (2.1) | 9.9 (2.2) |
2 | 8.4 (1.8) | 10.3 (2.0) | 11.7 (2.3) | 12.2 (2.3) |
5 | 9.7 (2.1) | 12.2 (2.5) | 13.8 (2.9) | 14.4 (3.1) |
10 | 11.5 (2.3) | 13.9 (2.4) | 16.1 (2.7) | 18.8 (3.3) |
0 | 2.07/1.99 | 26.5/19.7 | 0.981/0.987 |
2 | 2.17/2.13 | 16.9/14.3 | 0.991/0.994 |
5 | 2.22/2.20 | 12.7/11.6 | 0.993/0.997 |
10 | 2.24/2.22 | 10.0/9.1 | 0.989/0.990 |
0 | 2.13 | 30.9 | 0.990 |
2 | 2.36 | 22.1 | 0.981 |
5 | 2.54 | 17.2 | 0.975 |
10 | 2.71 | 12.6 | 0.953 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiau, L.-D. Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data. Crystals 2021, 11, 1226. https://doi.org/10.3390/cryst11101226
Shiau L-D. Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data. Crystals. 2021; 11(10):1226. https://doi.org/10.3390/cryst11101226
Chicago/Turabian StyleShiau, Lie-Ding. 2021. "Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data" Crystals 11, no. 10: 1226. https://doi.org/10.3390/cryst11101226
APA StyleShiau, L. -D. (2021). Comparison of the Nucleation Parameters of Aqueous l-glycine Solutions in the Presence of l-arginine from Induction Time and Metastable-Zone-Width Data. Crystals, 11(10), 1226. https://doi.org/10.3390/cryst11101226