Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Characterization
3. Results and Discussion
3.1. Morphology Evaluation and Elements Mapping of the Surface
3.2. Structural Characterization of Etched Samples
3.3. Specific Surface Area and Porosity Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afewerki, S.; Bassous, N.; Harb, S.; Palo-Nieto, C.; Ruiz-Esparza, G.U.; Marciano, F.R.; Webster, T.J.; Furtado, A.S.A.; Lobo, A.O. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine 2020, 24, 102143. [Google Scholar] [CrossRef]
- Kargozar, S.; Ramakrishna, S.; Mozafari, M. Chemistry of biomaterials: Future prospects. Curr. Opin. Biomed. Eng. 2019, 10, 181–190. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Ziębowicz, A.; Paszenda, Z.K.; Krawczyk, C. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications–A review. Biocyber. Biomed. Eng. 2017, 37, 229–245. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Sanon, C.; Chevalier, J.; Douillard, T.; Cattani-Lorente, M.; Scherrer, S.S.; Gremillard, L. A new testing protocol for zirconia dental implants. Dent. Mater. 2015, 31, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Vichi, A.; Zarone, F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 2015, 31, e63–e76. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.T.; Shi, P.; Man, H.C. Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Mater. Lett. 2005, 59, 1516–1520. [Google Scholar] [CrossRef]
- Jin, W.; Wang, G.; Qasim, A.M.; Mo, S.; Ruan, Q.; Zhou, H.; Li, W.; Chu, P.K. Corrosion protection and enhanced biocompatibility of biomedical Mg-Y-RE alloy coated with tin dioxide. Surf. Coat. Tech. 2019, 357, 78–82. [Google Scholar] [CrossRef]
- Ho, G.W.; Matinlinna, J.P. Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry. Silicon 2011, 3, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, S.J.L.; Madamba, D.; Siva, S.; Miyashiro, K.; Dreher, M.L.; Trépanier, C.; Nagaraja, S. The effects of surface processing on in-vivo corrosion of Nitinol stents in a porcine model. Acta Biomater. 2017, 62, 385–396. [Google Scholar] [CrossRef]
- Talha, M.; Ma, T.; Kumar, P.; Lin, Y.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants-A review. Coll. Surf. B Biointer. 2019, 176, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Bapat, A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C 2018, 91, 881–898. [Google Scholar] [CrossRef]
- Noronha, V.T.; Paula, A.J.; Duran, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Pazourková, L.; Reli, M.; Hundáková, M.; Pazdziora, E.; Predoi, D.; Simha Martynková, G.; Lafdi, K. Study of the Structure and Antimicrobial Activity of Ca-Deficient Ceramics on Chlorhexidine Nanoclay Substrate. Materials 2019, 12, 2996. [Google Scholar] [CrossRef] [Green Version]
- Garcia Silva-Bailão, M.; Lobato Potenciano da Silva, K.; Raniere Borges Dos Anjos, L.; de Sousa Lima, P.; de Melo Teixeira, M.; Maria de Almeida Soares, C.; Melo Bailão, A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fung. Biol. 2018, 122, 526–537. [Google Scholar] [CrossRef] [PubMed]
- de Avila, E.D.; Castro, A.G.B.; Tagit, O.; Krom, B.P.; Löwik, D.; van Well, A.A.; Bannenberg, L.J.; Vergani, C.E.; van den Beucken, J.J.J.P. Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Appl. Surf. Sci. 2019, 488, 194–204. [Google Scholar] [CrossRef]
- Uhlmann, E.; Schweitzer, L.; Kieburg, H. The Effects of Laser Microtexturing of Biomedical Grade 5 Ti-6Al-4V Dental Implants (Abutment) on Biofilm Formation. Procedia 2018, 68, 184–189. [Google Scholar] [CrossRef]
- Frutos, E.; Alvares, D.; Fernandez, L.; González-Carrasco, J.-L. Effects of bath composition and processing conditions on the microstructure and mechanical properties of coatings developed on 316 LVM by hot dipping in melted AlSi alloys. J. Alloy. Comp. 2014, 617, 646–653. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Graziani, G.; Barbaro, K.; Fadeeva, I.V.; Ghezzi, D.; Fosca, M.; Sassoni, E.; Vadalà, G.; Cappelletti, M.; Valle, F.; Baldini, N.; et al. Ionized jet deposition of antimicrobial and stem cell friendly silver-substituted tricalcium phosphate nanocoatings on titanium alloy. Bio. Mater. 2021, 6, 2629–2642. [Google Scholar]
- Guo, X. Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules. Chem. Mater. 2004, 16, 3988–3994. [Google Scholar] [CrossRef] [Green Version]
- Gremillard, L.; Melle, S.; Chevalier, J.; Zhao, J.; Fridrici, V.; Kapsa, P.; Geringer, J.; Uribeet, J. Degradation of Bioceramics. In Degradation of Implant Materials; Eliaz, N., Ed.; Springer: New York, NY, USA, 2012; pp. 195–252. [Google Scholar]
- Nakonieczny, D.S.; Basiaga, M.; Sambok, A.; Antonowicz, M.; Paszenda, Z.K.; Ziębowicz, A.; Krawczyk, C.; Ziębowicz, B.; Lemcke, H.; Kałużyński, P. Ageing of Zirconia Dedicated to Dental Prostheses for Bruxers Part 1: Influence of Accelerating Ageing for Surface Topography and Mechanical Properties. Rev. Adv. Mater. Sci. 2019, 58, 189–194. [Google Scholar] [CrossRef]
- Fan, J.; Lin, T.; Hu, F.; Yu, Y. Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alumina machinable dental ceramics. Ceram. Int. 2017, 43, 3647–3653. [Google Scholar] [CrossRef]
- Fornabio, M.; Reveron, H.; Adolfssin, E.; Montanaro, L.; Chevalier, R.; Palmero, P. Design and development of dental ceramics: Examples of current innovations and future concepts. In Advances in Ceramic Biomaterials-Materials, Devices and Challenges, 1st ed.; Palmero, P., Cambier, F., de Barra, E., Eds.; Woodhead Publishing: Sawston, UK, 2017; Volume 11, pp. 355–389. [Google Scholar]
- Nakonieczny, D.S.; Sambok, A.; Antonowicz, M.; Basiaga, M. Ageing of Zirconia Dedicated to Dental Prostheses for Bruxers Part 2: Influence of Heat Treatment for Surface Morphology, Phase Composition and Mechanical Properties. Rev. Adv. Mater. Sci. 2019, 58, 218–225. [Google Scholar] [CrossRef]
- Istrate, B.; Rau, J.V.; Munteanu, C.; Antoniac, I.V.; Saceleanu, V. Properties and in vitro assessment of ZrO2-based coatings obtained by atmospheric plasma jet spraying on biodegradable Mg-Ca and Mg-Ca-Zr alloys. Ceram. Int. 2020, 46, 15897–15906. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Walke, W.; Majewska, J.; Paszenda, Z. Characterization of magnesia-doped yttria-stabilized zirconia powders for dental technology applications. Acta Bio. Biomech. 2014, 16, 99–106. [Google Scholar]
- Nakonieczny, D.S.; Antonowicz, M.; Paszenda, Z.; Radko, T.; Drewniak, S.; Bogacz, W.; Krawczyk, C. Experimental investigation of particle size distribution and morphology of alumina-yttria-ceria-zirconia powders obtained via sol–gel route. Biocyber. Biomed. Eng. 2018, 38, 535–543. [Google Scholar] [CrossRef]
- Roitero, E.; Ochoa, M.; Anglada, M.; Mücklich, F.; Jiménez Piqué, E. Low temperature degradation of laser patterned 3Y-TZP: Enhancement of resistance after thermal treatment. J. Europ. Ceram. Soc. 2018, 38, 1742–1749. [Google Scholar] [CrossRef]
- Yan, M.; Csik, A.; Yang, C.-C.; Luo, Y.; Fodor, T.; Ding, S.-J. Synergistic reinforcement of surface modification on improving the bonding of veneering ceramics to zirconia. Ceram. Int. 2018, 44, 19665–19671. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, A.; Muhammad, N.; Gilani, M.A.; Vankelecom, I.F.J.; Khan, A.L. Effect of zeolite surface modification with ionic liquid [APTMS][Ac] on gas separation performance of mixed matrix membranes. Sep. Pur. Technol. 2018, 205, 176–183. [Google Scholar] [CrossRef]
- Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; de Oliveira, T.M.; Van Assche, G.; Bals, S.; Dendooven, J.; Detavernier, C. Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surf. Coat. Technol. 2018, 349, 1032–1041. [Google Scholar] [CrossRef]
- Rao, P.K.; Jana, P.; Ahmad, M.I.; Roy, P.K. Synthesis and characterization of zirconia toughened alumina ceramics prepared by co-precipitation method. Ceram. Int. 2019, 45, 16054–16061. [Google Scholar] [CrossRef]
- Monteiro, J.B.; Oliani, M.G.; Guilardi, L.F. Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: Effect of etching time and hydrofluoric acid concentration. J. Mech. Behav. Biomed. Mater. 2018, 77, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattabanasuk, V.; Charnchairerk, P.; Punsukumtana, L.; Burrow, M.F. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties. J. Investig. Clin. Dent. 2017, 8, e12220. [Google Scholar] [CrossRef] [PubMed]
- Casuccia, A.; Mazzitellia, C.; Monticelli, F.; Toledano, M.; Osorio, R.; Osorio, E.; Papacchini, F.; Ferrari, M. Morphological analysis of three zirconium oxide ceramics: Effect of surface treatments. Dent. Mater. 2010, 26, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Pazourková, L.; Hundáková, M.; Peikertová, P.; Martynková, G. Preparation of calcium-deficient hydroxyapatite particles on vermiculite by precipitation and sonication. J. Aust. Ceram. Soc. 2017, 53, 775–785. [Google Scholar] [CrossRef]
- Šupová, M.; Suchý, T.; Sucharda, Z.; Filová, E.; Kinderen, J.N.L.M.; Steinerová, M.; Bačáková, L.; Martynková, G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behaviour. J. Am. Ceram. Soc. 2019, 102, 2882–2904. [Google Scholar] [CrossRef]
- Elsaka, S.E. Influence of surface treatments on the surface properties of different zirconia cores and adhesion of zirconia-veneering ceramic systems. Dent. Mater. 2013, 29, e239–e251. [Google Scholar] [CrossRef]
- Karthigeyan, S.; Ravindran, A.J.; Bhat, T.R.R.; Nageshwarao, M.N.; Murugesan, S.V.; Angamuthu, V. Surface Modification Techniques for Zirconia-Based Bioceramics: A Review. J. Pharm. Bioallied. Sci. 2019, 11 (Suppl. 2), S131–S134. [Google Scholar] [PubMed]
- Musyarofah, M.; Soontaranon, S.; Limphirat, W.; Triwikantoro; Pratapa, S. XRD, WAXS, FTIR, and XANES studies of silica-zirconia systems. Ceram. Int. 2019, 45, 15660–15670. [Google Scholar] [CrossRef]
- Merle-Méjean, T.; Barberis, P.; Othmane, S.B.; Nardou, F.; Quintard, P.E. Chemical forms of hydroxyls on/in Zirconia: An FT-IR study. J. Eur. Ceram. Soc. 1998, 18, 1579–1586. [Google Scholar] [CrossRef]
- Qian, Z.; Shi, J.L. Characterization of pure and doped zirconia nanoparticles with infrared transmission spectroscopy. Nanostruct. Mater. 1998, 10, 235–244. [Google Scholar] [CrossRef]
- Yakout, S.M.; Hassan, H.S. Adsorption Characteristics of Sol Gel-Derived Zirconia for Cesium Ions from Aqueous Solutions. Molecules 2014, 19, 9160–9172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Liu, Y.; Zhu, K.; Siu, G.; Xiong, Y.; Xiong, C. Infrared spectra of nanometre granular zirconia. J. Phys. Condens. Matter 1999, 11, 2035–2042. [Google Scholar] [CrossRef]
- Pagano, S.; Lombardo, G.; Balloni, S.; Bodo, M.; Cianetti, S.; Barbati, A.; Montaseri, A.; Marinucci, L. Cytotoxicity of universal dental adhesive systems: Assessment in vitro assays on human gingival fibroblasts. Toxicol. In Vitro 2019, 60, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.; Gafurov, M.R.; Makshakova, O.N.; Smirnov, V.; Komlev, V.S.; Barinov, S.M.; Kudryavtsev, E.; Sergeeva, N.; Achmedova, S.; Mamin, G.V.; et al. Influence of Al on the structure and in vitro behavior of hydroxyapatite nanopowders. J. Phys. Chem. B 2019, 123, 9143–9154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchý, T.; Bartoš, M.; Sedláček, R.; Šupová, M.; Žaloudková, M.; Martynková, G.S.; Foltán, R. Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds. Materials 2021, 14, 4388. [Google Scholar] [CrossRef]
Agent, Cp% | Etching Time, (s) | Concentration Cp% | Sample Name ALUMINA | Sample Name ZIRCONIA |
---|---|---|---|---|
98% H2SO4: 35% H2O2 | 60 | 100 | ZrO2_PS1_60 | Al2O3_PS1_60 |
120 | ZrO2_PS1_120 | Al2O3_PS1_120 | ||
98% H2SO4: 65% HNO3 1:3 | 60 | 100 | ZrO2_SN1_60 | Al2O3_SN1_60 |
120 | ZrO2_SN1_120 | Al2O3_SN1_120 | ||
45% HF | 60 | 15 | ZrO2_HF0.15_60 | Al2O3_HF0.15_60 |
120 | ZrO2_HF0.15_120 | Al2O3_HF0.15_120 |
Powder | Sample | Specific Surface Area, [m2g−1] | Pore Volume, [cm3g−1] | Pore Diameter, [nm] |
---|---|---|---|---|
Zirconia | ZrO2_PS1_60 | 11.842 | 0.437 | 214.681 |
ZrO2_PS1_120 | 7.369 | 0.072 | 17.658 | |
ZrO2_HF0.15_60 | 13.455 | 0.425 | 183.673 | |
ZrO2_HF0.15_120 | 12.745 | 0.431 | 206.289 | |
Alumina | Al2O3_PS1_60 | 3.543 | 0.165 | 186.250 |
Al2O3_PS1_120 | 0.220 | 0.006 | 3.069 | |
Al2O3_HF0.15_60 | 0.316 | 0.008 | 3.817 | |
Al2O3_HF0.15_120 | 0.610 | n.d. | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakonieczny, D.S.; Slíva, A.; Paszenda, Z.; Hundáková, M.; Kratošová, G.; Holešová, S.; Majewska, J.; Kałużyński, P.; Sathish, S.K.; Simha Martynková, G. Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment. Crystals 2021, 11, 1232. https://doi.org/10.3390/cryst11101232
Nakonieczny DS, Slíva A, Paszenda Z, Hundáková M, Kratošová G, Holešová S, Majewska J, Kałużyński P, Sathish SK, Simha Martynková G. Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment. Crystals. 2021; 11(10):1232. https://doi.org/10.3390/cryst11101232
Chicago/Turabian StyleNakonieczny, Damian Stanislaw, Aleš Slíva, Zbigniew Paszenda, Marianna Hundáková, Gabriela Kratošová, Sylva Holešová, Justyna Majewska, Piotr Kałużyński, Sajjan Kumar Sathish, and Gražyna Simha Martynková. 2021. "Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment" Crystals 11, no. 10: 1232. https://doi.org/10.3390/cryst11101232
APA StyleNakonieczny, D. S., Slíva, A., Paszenda, Z., Hundáková, M., Kratošová, G., Holešová, S., Majewska, J., Kałużyński, P., Sathish, S. K., & Simha Martynková, G. (2021). Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment. Crystals, 11(10), 1232. https://doi.org/10.3390/cryst11101232