Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software
Abstract
:1. Introduction
2. Numerical Modeling and Material Parameters
2.1. Numerical Modeling
2.2. The Thin Film Solar Cell Device
2.3. Material Parameters
3. Results and Discussion
3.1. Effect of Layers Thickness on the Device Performance
3.1.1. Effect of CZTS Absorber (Acceptor) Layer Thickness on the Device Performance
3.1.2. Effect of CdS Buffer (Donor) Layer Thickness on the Device Performance
3.1.3. Effect of ZnO Window Layer Thickness on the Device Performance
3.2. Effect of Doping Concentration on the Device Performance
3.2.1. Effect of CZTS Absorber (Acceptor) Doping Concentration on the Device Performance
3.2.2. Effect of CdS Buffer (Donor) Doping Concentration on the Device Performance
3.2.3. Effect of ZnO Window Doping Concentration on the Device Performance
3.3. Effect of Working Temperature on the Device Performance
3.4. Optimization of the FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cell
3.4.1. Characteristics at Optimum
3.4.2. Energy Band Gap at Optimum
3.5. Comparison the Simulation Results with Experimental Thin Film-Based Solar Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Jacoby, M. The future of low-cost solar cells. Chem. Eng. News 2016, 94, 30–35. [Google Scholar]
- Sciuto, G.L.; Salvatore, C. A 3D finite element model of degradation phenomena in organic solar devices affected by oxidation. Int. J. Energy Environ. Eng. 2020, 11, 431–437. [Google Scholar] [CrossRef]
- Banu, S.; Ahn, S.J.; Ahn, S.K.; Yoon, K.; Cho, A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol. Energy Mater. Sol. Cells 2016, 151, 14–23. [Google Scholar] [CrossRef]
- Repins, I.L.; Romero, M.J.; Li, J.V.; Wei, S.-H.; Kuciauskas, D.; Jiang, C.-S.; Beall, C.; Dehart, C.; Mann, J.; Hsu, W.-C.; et al. Kesterite Successes, Ongoing Work, and Challenges: A Perspective From Vacuum Deposition. IEEE J. Photovolt. 2012, 3, 439–445. [Google Scholar] [CrossRef]
- Yadav, M.C.; Krishnan, S.; Mohammad, F.; Al-Lohedan, H.A. Fabrication and application of graphene-based composites for indoor air quality and wastewater treatment. In Graphene-Based Nanotechnologies for Energy and Environment; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 359–387. [Google Scholar]
- Zhou, H.; Hsu, W.C.; Duan, H.S.; Bob, B.; Yang, W.; Song, T.B.; Hsu, C.-J.; Yang, Y. CZTS nanocrystals: A promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 2013, 6, 2822–2838. [Google Scholar] [CrossRef]
- Xinkun, W.; Wei, L.; Shuying, C.; Yunfeng, L.; Hongjie, J. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation. J. Semicond. 2012, 33, 022002. [Google Scholar]
- International Electrotechnical Commission 2016 Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval—Part 1-4: Special Requirements for Testing of Thin-Film Cu (In,Ga) (S,Se) 2 Based Photovoltaic (PV) Modules; IEC Standard No. 61215-1-4; Canadian Standards Association: Toronto, ON, Canada, 2021.
- International Electrotechnical Commission 2016 Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval—Part 2: Test Procedures; IEC Standard No. 61215-2; American National Standards Institute: New York, NY, USA, 2016.
- Khattak, Y.H.; Baig, F.; Ullah, S.; Marí, B.; Beg, S.; Ullah, H. Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 2018, 10, 033501. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, Z.U.; Mohammad, N.; Tahir, M.; Shahzada, K.; Khan, S.W.; Salman, M.; Khan, M.; Gul, A. Numerical Modeling for Engineering Analysis and Designing of Optimum Support Systems for Headrace Tunnel. Adv. Civ. Eng. 2018, 2018, 7159873. [Google Scholar] [CrossRef]
- Haddout, A.; Raidou, A.; Fahoume, M. A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 2019, 125, 124. [Google Scholar] [CrossRef]
- Theraja, B.L. A Textbook of Electrical Technology; S. Chand Publishing: New Delhi, India, 2008. [Google Scholar]
- Naidu, S.M. A Text Book of Applied Physics; Pearson Education: New Delhi, India, 2009. [Google Scholar]
- Li, S.S. Photonic Devices. In Semiconductor Physical Electronics; Springer: Boston, MA, USA, 1993; pp. 327–390. [Google Scholar]
- Amin, N.; Yamada, A.; Konagai, M. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-µm-Thick CdTe Thin Film Solar Cells. Jpn. J. Appl. Phys. 2002, 41, 2834–2841. [Google Scholar] [CrossRef]
- Ullah, H.; Marí, B.; Cui, H.N. Investigation on the Effect of Gallium on the Efficiency of CIGS Solar Cells through Dedicated Software. Appl. Mech. Mater. 2013, 448–453, 1497–1501. [Google Scholar] [CrossRef]
- Paudel, N.; Wieland, K.; Compaan, A. Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 2012, 105, 109–112. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Hegedus, S.S.; Shafarman, W.N. Thin-film solar cells: Device measurements and analysis. Prog. Photovolt. Res. Appl. 2004, 12, 155–176. [Google Scholar] [CrossRef]
- Simya, O.; Mahaboobbatcha, A.; Balachander, K. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 2015, 82, 248–261. [Google Scholar] [CrossRef]
- Niemegeers, A.; Burgelman, M. Numerical modelling of ac-characteristics of CdTe and CIS solar cells. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, Washington, DC, USA, 13–17 May 1996; pp. 901–904. [Google Scholar]
- Decock, K.; Zabierowski, P.; Burgelman, M. Modeling metastabilities in chalcopyrite-based thin film solar cells. J. Appl. Phys. 2012, 111, 43703. [Google Scholar] [CrossRef] [Green Version]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Movla, H. Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik 2014, 125, 67–70. [Google Scholar] [CrossRef]
- Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N.A.; Chey, S.J.; Guha, S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 2013, 21, 72–76. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, W.; Miao, X. Numerical simulation of CZTS thin film solar cell. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 502–505. [Google Scholar]
- Adewoyin, A.D.; Olopade, M.A.; Chendo, M. Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 2017, 133, 122–131. [Google Scholar] [CrossRef]
- Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review. J. Phys. Energy 2019, 2, 022001. [Google Scholar] [CrossRef]
- Kuddus, A.; Mostaque, S.K.; Hossain, J. Simulating the performance of a high-efficiency SnS-based dual-heterojunction thin film solar cell. Opt. Mater. Express 2021, 11, 3812. [Google Scholar] [CrossRef]
- Hinoki, A.; Kamiya, S.; Tsuchiya, T.; Yamada, T.; Kikawa, J.; Araki, T.; Suzuki, A.; Nanishi, Y. Correlation between the leakage current and the thickness of GaN-layer of AlGaN/GaN-HFET. Phys. Status Solidi C 2007, 4, 2728–2731. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Pathak, D.; Wagner, T.; Nunzi, J.-M. Organic materials for photovoltaic applications: Review and mechanism. Synth. Met. 2014, 190, 20–26. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. Photovoltaic Science and Engineering; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS 2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [Green Version]
- Zyoud, S.H.; Zyoud, A.H. Effect of Absorber (Acceptor) and Buffer (Donor) Layers Thickness on Mo/CdTe/CdS/ITO Thin Film Solar Cell Performance: SCAPS–1D Simulation Aspect. Int. Rev. Model. Simul. 2021, 14, 10–17. [Google Scholar] [CrossRef]
- Kara, R.; Rachid, S.; Azizi, A. Effect of i-ZnO seed layer on the properties of electrodeposited p-Cu2O/n-ZnO/FTO heterojunction thin films. Mater. Res. Express 2019, 6, 126402. [Google Scholar] [CrossRef]
- Tobbeche, S.; Kalache, S.; Elbar, M.; Kateb, M.N.; Serdouk, M.R. Improvement of the CIGS solar cell performance: Structure based on a ZnS buffer layer. Opt. Quantum Electron. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Hossain, S.; Amin, N.; Martin, M.A.; Aliyu, M.M.; Razykov, T.; Sopian, K. A numerical study on the prospects of high efficiency ultra thin ZnxCd1−xS/CdTe Solar Cell. Chalcogenide Lett. 2011, 8, 263–272. [Google Scholar]
- Sha, W.E.; Ren, X.; Chen, L.; Choy, W.C. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 2015, 106, 221104. [Google Scholar] [CrossRef] [Green Version]
- Zyoud, S.H.; Abdelkader, A.; Zyoud, A.H. The Impact of Temperature on the Performance of Semiconductor Laser Diode. Int. J. Adv. Sci. Technol. 2020, 29, 1167–1180. [Google Scholar]
- Al-Khazzar, A.A.A. Behavior of four Solar PV modules with temperature variation. Int. J. Renew. Energy Res. 2016, 6, 1091–1099. [Google Scholar]
- Sproul, A.B.; Green, M.A. Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. J. Appl. Phys. 1993, 73, 1214–1225. [Google Scholar] [CrossRef]
- Gong, J.W.; Chen, Q.F.; Lian, M.R.; Liu, N.C.; Daoust, C. Temperature feedback control for improving the stability of a semiconductor-metal-oxide (SMO) gas sensor. IEEE Sens. J. 2006, 6, 139–145. [Google Scholar]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Abdelkader, A.F.I. Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non–Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software. Crystals 2021, 11, 145. [Google Scholar]
- Xiao, B.; Zhu, M.; Zhang, B.; Dong, J.; Ji, L.; Yu, H.; Sun, X.; Jie, W.; Xu, Y. Optical and electrical properties of vanadium-doped ZnTe crystals grown by the temperature gradient solution method. Opt. Mater. Express 2018, 8, 431–439. [Google Scholar] [CrossRef]
- Niemegeers, A.; Burgelman, M. Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. J. Appl. Phys. 1997, 81, 2881–2886. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H.; Abdelkader, A.; Ahmed, N.M. Numerical Simulation for Optimization of ZnTe-Based Thin-Film Heterojunction Solar Cells with Different Metal Chalcogenide Buffer Layers Replacements: SCAPS–1D Simulation Program. Int. Rev. Model. Simul. 2021, 14, 79–88. [Google Scholar] [CrossRef]
- Tajima, S.; Umehara, M.; Hasegawa, M.; Mise, T.; Itoh, T. Cu2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition. Prog. Photovolt. Res. Appl. 2016, 25, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Ray, A. Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments. Phys. B Condens. Matter 2012, 407, 4391–4397. [Google Scholar] [CrossRef]
- Ahmed, S.; Reuter, K.B.; Gunawan, O.; Guo, L.; Romankiw, L.T.; Deligianni, H. A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell. Adv. Energy Mater. 2012, 2, 253–259. [Google Scholar] [CrossRef]
- Tao, J.; Liu, J.; Chen, L.; Cao, H.; Meng, X.; Zhang, Y.; Zhang, C.; Sun, L.; Yang, P.; Chu, J. 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem. 2016, 18, 550–557. [Google Scholar] [CrossRef]
- Wang, K.; Gunawan, O.; Todorov, T.K.; Shin, B.; Chey, S.J.; Bojarczuk, N.A.; Mitzi, D.B.; Guha, S. Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 2010, 97, 143508. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Film. 2009, 517, 2455–2460. [Google Scholar] [CrossRef]
- Chen, S.; Walsh, A.; Gong, X.-G.; Wei, S.-H. Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers. Adv. Mater. 2013, 25, 1522–1539. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, G.; Feng, Y.; Li, Z.; Yang, C.; Xiao, X. Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization. RSC Adv. 2015, 5, 40369–40374. [Google Scholar] [CrossRef]
Parameter | p-CZTS | n-CdS | n-ZnO | FTO |
---|---|---|---|---|
W (nm) | 1200–3600 | 10–100 | 40–280 | 280 |
Eg (eV) | 1.45 | 2.4 | 3.3 | 3.5 |
χ (eV) | 4.5 | 4.5 | 4.6 | 4 |
εr | 9 | 9 | 9 | 9 |
NC (cm−3) | 2.2 × 1018 | 1.8 × 1019 | 2.2 × 1018 | 1 × 1019 |
NV (cm−3) | 1.8 × 1019 | 2.4 × 1018 | 1.8 × 1019 | 1 ×1018 |
Ve-th (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Vp-th (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
µe (cm2/Vs) | 60 | 100 | 100 | 20 |
µp (cm2/Vs) | 20 | 25 | 25 | 10 |
ND (cm−3) | 0 | 1 × 1017–1 × 1018 | 1 × 1018–1 × 1019 | 1 × 1018 |
NA (cm−3) | 1 × 1016–1 × 1017 | 0 | 0 | 0 |
Spectrum | AM 1.5G1 sun. Spectrum |
---|---|
Wavelength range (nm) | 200–4000 |
Transmission% | 100 |
Ideal light current G(x) (mA/cm2) | 20 |
Transmission of attenuation filter % | 100 |
Ideal light current cell (mA/cm2) | 0 |
Left Contact (Back) | Right Contact (Front) | ||
---|---|---|---|
Thermionic emission surface recombination velocity (cm/s) | Electron | 1 × 107 | 1 × 107 |
Holes | 1 × 107 | 1 × 107 | |
Metal work function (eV) | 4.6 | 4.1 | |
Majority carrier barrier height (eV) | Relative to EF | 0.4 | 0.1 |
Relative to EV or EC | −0.068 | 0.0571 |
Thickness (nm) | ||||
---|---|---|---|---|
1200 | 0.8662 | 29.196593 | 82.46 | 20.85 |
1600 | 0.8768 | 30.175689 | 82.86 | 21.92 |
2000 | 0.8851 | 30.788066 | 82.89 | 22.59 |
2400 | 0.8921 | 31.188947 | 82.73 | 23.02 |
2800 | 0.8983 | 31.457338 | 82.46 | 23.3 |
3200 | 0.9040 | 31.638435 | 82.14 | 23.49 |
3600 | 0.909 | 31.761007 | 81.82 | 23.62 |
Thickness (nm) | ||||
---|---|---|---|---|
10 | 0.8925 | 33.610242 | 82.93 | 24.88 |
25 | 0.8925 | 33.425282 | 82.77 | 24.69 |
40 | 0.8924 | 33.122082 | 82.51 | 24.39 |
55 | 0.8923 | 32.660974 | 82.34 | 24 |
70 | 0.8922 | 32.070507 | 82.51 | 23.61 |
85 | 0.8922 | 31.572539 | 82.70 | 23.3 |
100 | 0.8921 | 31.188947 | 82.73 | 23.02 |
Thickness (nm) | ||||
---|---|---|---|---|
40 | 0.8925 | 34.044934 | 82.75 | 25.15 |
80 | 0.8925 | 33.768014 | 82.76 | 24.94 |
120 | 0.8925 | 33.594461 | 82.77 | 24.82 |
160 | 0.8924 | 33.490579 | 82.77 | 24.74 |
200 | 0.8924 | 33.425282 | 82.78 | 24.69 |
240 | 0.8924 | 33.380924 | 82.78 | 24.66 |
280 | 0.8924 | 33.34183 | 82.78 | 24.64 |
Acceptor Concentration, NA (cm−3) | ||||
---|---|---|---|---|
1.0 × 1016 | 0.8641 | 34.076207 | 82.35 | 24.25 |
2.5 × 1016 | 0.9013 | 33.440111 | 82.92 | 24.99 |
4.0 × 1016 | 0.9195 | 33.120408 | 83.22 | 25.35 |
5.5 × 1016 | 0.9316 | 32.911432 | 83.34 | 25.55 |
7.0 × 1016 | 0.9405 | 32.758694 | 83.32 | 25.52 |
8.5 × 1016 | 0.9477 | 32.639828 | 83.11 | 25.45 |
1.0 × 1017 | 0.9536 | 32.543485 | 82.75 | 25.38 |
Donor Concentration, (cm−3) | ||||
---|---|---|---|---|
1.0 × 1017 | 0.9135 | 32.911432 | 83.35 | 25.55 |
2.5 × 1017 | 0.9135 | 32.940552 | 83.68 | 25.68 |
4.0 × 1017 | 0.9135 | 32.931112 | 83.69 | 25.67 |
5.5 × 1017 | 0.9134 | 32.872754 | 83.74 | 25.66 |
7.0 × 1017 | 0.9134 | 32.797653 | 83.79 | 25.60 |
8.5 × 1017 | 0.9134 | 32.719003 | 83.82 | 25.54 |
1.0 × 1018 | 0.9134 | 32.64839 | 83.84 | 25.49 |
Donor Concentration, (cm−3) | ||||
---|---|---|---|---|
1.0 × 1018 | 0.9134 | 32.940552 | 83.69 | 25.68 |
2.5 × 1018 | 0.9134 | 32.956339 | 83.73 | 25.7 |
4.0 × 1018 | 0.9134 | 32.96436 | 83.76 | 25.72 |
5.5 × 1018 | 0.9134 | 32.969749 | 83.77 | 25.72 |
7.0 × 1018 | 0.9134 | 32.973800 | 83.78 | 25.73 |
8.5 × 1018 | 0.9134 | 32.977041 | 83.79 | 25.74 |
1.0 × 1019 | 0.9134 | 32.979739 | 83.79 | 25.74 |
Temperature (K) | ||||
---|---|---|---|---|
280 | 0.9362 | 32.905463 | 84.16 | 25.93 |
300 | 0.9315 | 32.964360 | 83.75 | 25.72 |
320 | 0.9196 | 33.015222 | 83.45 | 25.34 |
340 | 0.8961 | 33.056706 | 83.17 | 24.64 |
360 | 0.8633 | 33.089497 | 82.63 | 23.60 |
380 | 0.8260 | 33.116285 | 81.78 | 22.37 |
400 | 0.7868 | 33.139151 | 80.74 | 21.05 |
Structure | W (nm) | (cm−3) | Ref. | ||||
---|---|---|---|---|---|---|---|
CZTS/CdS/ZnO | 2400/25/120 | 5.5 × 1016 | 32.96 | 0.932 | 83.75 | 25.72 | [Proposed] |
CZTS/CdS/ZnO | 21.3 | 0.7 | 63 | 9.4 | [49] | ||
CZTS/CdS/ZnO | 19.5 | 0.661 | 65.8 | 8.4 | [27] | ||
CZTS/CdS/ZnO | 22 | 0.567 | 58.1 | 7.3 | [50,51] | ||
CZTS/CdS/ZnO | 21.8 | 0.614 | 55.5 | 7.1 | [52] | ||
CZTS/CdS/ZnO | 17.8 | 0.587 | 65 | 6.81 | [53] | ||
CZTS/CdS/ZnO | 17.9 | 0.610 | 62 | 6.77 | [54,55] | ||
CZTS/CdS/ZnO | 19.9 | 0.592 | 57.6 | 6.7 | [52] | ||
CZTS/CdS/ZnO | 17.6 | 0.584 | 62.89 | 6.44 | [50] | ||
CZTS/CdS/ZnO | 15.7 | 0.623 | 63.9 | 6.25 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Prasad, A.R.; Khan, S.N.; Abdelkader, A.F.I.; Shahwan, M. Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software. Crystals 2021, 11, 1468. https://doi.org/10.3390/cryst11121468
Zyoud SH, Zyoud AH, Ahmed NM, Prasad AR, Khan SN, Abdelkader AFI, Shahwan M. Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software. Crystals. 2021; 11(12):1468. https://doi.org/10.3390/cryst11121468
Chicago/Turabian StyleZyoud, Samer H., Ahed H. Zyoud, Naser M. Ahmed, Anupama R. Prasad, Sohaib Naseem Khan, Atef F. I. Abdelkader, and Moyad Shahwan. 2021. "Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software" Crystals 11, no. 12: 1468. https://doi.org/10.3390/cryst11121468
APA StyleZyoud, S. H., Zyoud, A. H., Ahmed, N. M., Prasad, A. R., Khan, S. N., Abdelkader, A. F. I., & Shahwan, M. (2021). Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software. Crystals, 11(12), 1468. https://doi.org/10.3390/cryst11121468