Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film
Abstract
:1. Introduction
2. Design and Methods
3. Results and Discussions
4. Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tirkey, M.M.; Gupta, N. Electromagnetic absorber design challenges. IEEE Electromagn. Compat. Mag. 2019, 8, 59–65. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Sabah, C. Microwave metamaterial absorber for sensing applications. Opto-Electron. Rev. 2017, 25, 318–325. [Google Scholar] [CrossRef]
- Salisbury, W.W. Absorbent body of electromagnetic waves. U.S. Patent 2,599,944, 10 June 1952. [Google Scholar]
- Du Toit, L.J. The design of Jauman absorbers. IEEE Antennas Propag. Mag. 1994, 36, 17–25. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, J.; Kim, S.S. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Trans. Magn. 2000, 36, 3272–3274. [Google Scholar] [CrossRef]
- Naito, Y.; Suetake, K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 1971, 19, 65–72. [Google Scholar] [CrossRef]
- Ali, S.A.M.; Abu, M.; Zabri, S.N. A review: The development of metamaterial absorber. Int. J. Integr. Eng. 2020, 12, 72–80. [Google Scholar]
- Li, L.; Lv, Z. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes. J. Appl. Phys. 2017, 122, 055104. [Google Scholar] [CrossRef]
- Machado, G.G.; Cahill, R.; Fusco, V.; Conway, G. Comparison of FSS topologies for maximising the bandwidth of ultra-thin microwave absorbers. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Soheilifar, M.R.; Sadeghzadeh, R.A. Design, fabrication and characterisation of scaled and stacked layers planar metamaterial absorber. IET Microw. Antennas Propag. 2015, 9, 86–93. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Chen, X.; Wu, Z.; He, Y.; Lv, Y.; Zou, Y. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J. Magn. Magn. Mater. 2020, 497, 166075. [Google Scholar] [CrossRef]
- Fang, J.; Huang, J.; Gou, Y.; Shang, Y. Research on broadband tunable metamaterial absorber based on PIN diode. Optik 2020, 200, 163171. [Google Scholar] [CrossRef]
- Zhu, J.; Li, D.; Yan, S.; Cai, Y.; Liu, Q.H.; Lin, T. Tunable microwave metamaterial absorbers using varactor-loaded split loops. Europhys. Lett. 2015, 112, 54002. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Wei, J.; Lee, C. Metamaterials–from fundamentals and MEMS tuning mechanisms to applications. Nanophotonics 2020, 9, 3049–3070. [Google Scholar] [CrossRef]
- Jayathilake, D.; Peiris, T.N. Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J. Mater. Chem Eng. 2018, 1, 1004. [Google Scholar]
- Li, X.; Wang, L.; Li, X.; Zhang, J.; Wang, M.; Che, R. Multi-dimensional ZnO@ MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon 2021, 172, 15–25. [Google Scholar] [CrossRef]
- Li, W.; Shamim, A. Silver Nanowires Based Transparent, Broadband FSS Microwave Absorber. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Okano, Y.; Ogino, S.; Ishikawa, K. Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theory Tech. 2012, 60, 2456–2464. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, C.; Qian, S.; Zong, Z.; Wu, X.; Yue, Y.; Gu, W. Flexible and transparent W-band absorber fabricated by EHD printing technology. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1345–1349. [Google Scholar] [CrossRef]
- Min, P.; Song, Z.; Yang, L.; Dai, B.; Zhu, J. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt. Express 2020, 28, 19518–19530. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.; Youn, H.; Shin, Y.J.; Guo, L.J. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 2014, 1, 279–284. [Google Scholar] [CrossRef]
- Sheokand, H.; Singh, G.; Ghosh, S.; Ramkumar, J.; Ramakrishna, S.A.; Srivastava, K.V. An optically transparent broadband microwave absorber using interdigital capacitance. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 113–117. [Google Scholar] [CrossRef]
- Chen, L.; Ruan, Y.; Luo, S.S.; Ye, F.J.; Cui, H.Y. Optically Transparent Metasurface Absorber Based on Reconfigurable and Flexible Indium Tin Oxide Film. Micromachines 2020, 11, 1032. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, J.; Pang, Y.; Wang, J.; Ma, H.; Qu, S. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Opt. Express 2018, 26, 15665–15674. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Tang, Z.; Fan, X.; Cheng, L.; Zhang, L. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Appl. Phys. A 2019, 125, 131. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Jiang, T.; Zhao, J.; Feng, Y. Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency. J. Phys. D Appl. Phys. 2019, 52, 335101. [Google Scholar] [CrossRef]
- Deng, R.; Zhang, K.; Li, M.; Song, L.; Zhang, T. Targeted design, analysis and experimental characterization of flexible microwave absorber for window application. Mater. Des. 2019, 162, 119–129. [Google Scholar] [CrossRef]
- Lai, S.; Wu, Y.; Zhu, X.; Gu, W.; Wu, W. An optically transparent ultrabroadband microwave absorber. IEEE Photonics J. 2017, 9, 5503310. [Google Scholar] [CrossRef]
- Lu, W.B.; Wang, J.W.; Zhang, J.; Liu, Z.; Chen, H.; Song, W.; Jiang, Z. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon 2019, 152, 70–76. [Google Scholar] [CrossRef]
- Yi, D.; Wei, X.C.; Xu, Y.L. Transparent microwave absorber based on patterned graphene: Design, measurement, and enhancement. IEEE Trans. Nanotechnol. 2017, 16, 484–490. [Google Scholar] [CrossRef]
- Wu, B.; Tuncer, H.M.; Naeem, M.; Yang, B.; Cole, M.T.; Milne, W.I.; Hao, Y. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci. Rep. 2014, 4, 4130. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Wei, X.C.; Xu, Y.L. Tunable microwave absorber based on patterned graphene. IEEE Trans. Microw. Theory Tech. 2017, 65, 2819–2826. [Google Scholar] [CrossRef]
- Grande, M.; Bianco, G.V.; Vincenti, M.A.; De Ceglia, D.; Capezzuto, P.; Petruzzelli, V.; Scalora, M.; Bruno, G.; D’Orazio, A. Optically transparent microwave screens based on engineered graphene layers. Opt. Express 2016, 24, 22788–22795. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Ma, L.; Tan, J.; Wang, H.; Ding, X. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale 2016, 8, 16684–16693. [Google Scholar] [CrossRef]
- Yang, C.; Gu, H.; Lin, W.; Yuen, M.M.; Wong, C.P.; Xiong, M.; Gao, B. Silver nanowires: From scalable synthesis to recyclable foldable electronics. Adv. Mater. 2011, 23, 3052–3056. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@ Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [Google Scholar] [CrossRef]
- Yu, S.; Ma, X.; Li, X.; Li, J.; Gong, B.; Wang, X. Enhanced adhesion of Ag nanowire based transparent conducting electrodes for application in flexible electrochromic devices. Opt. Mater. 2021, 120, 111414. [Google Scholar] [CrossRef]
- Ran, Y.; He, W.; Wang, K.; Ji, S.; Ye, C. A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Commun. 2014, 50, 14877–14880. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yu, D.; Li, G.; Cao, Y.; Ruan, Y.; Lin, M. Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film. Crystals 2021, 11, 1583. https://doi.org/10.3390/cryst11121583
Dong Y, Yu D, Li G, Cao Y, Ruan Y, Lin M. Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film. Crystals. 2021; 11(12):1583. https://doi.org/10.3390/cryst11121583
Chicago/Turabian StyleDong, Yanfei, Dingwang Yu, Guochao Li, Yulin Cao, Youde Ruan, and Mingtuan Lin. 2021. "Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film" Crystals 11, no. 12: 1583. https://doi.org/10.3390/cryst11121583
APA StyleDong, Y., Yu, D., Li, G., Cao, Y., Ruan, Y., & Lin, M. (2021). Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film. Crystals, 11(12), 1583. https://doi.org/10.3390/cryst11121583