Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
- Aqueous treatment: BS was soaked in cold water for 24 h.
- Hot aqueous treatment: BS was soaked in hot water at 100 °C for 16 h.
- Alkali treatment: BS was soaked in 10% sodium hydroxide solution for 30 min at room temperature and rinsed with distilled water until neutral pH.
2.2. Mixture Proportion
2.3. Mixture Preparation
2.4. Morphology
2.5. Rheological Properties
2.6. Physical and Mechanical Properties
3. Results and Discussion
3.1. Effect of BS Treatment on BSC Composite
3.1.1. Mass Loss of BS
3.1.2. Morphological Properties
3.1.3. Setting Time and Workability
3.1.4. Physical and Mechanical Properties
3.2. Effect of BS Content on Composite
3.2.1. Setting Time and Workability
3.2.2. Morphology and Physical Properties
3.2.3. Mechanical Properties
4. Conclusions
- Different BS pretreatment (cold, hot aqueous, and alkali) methods have no influence on the composite density and porosity. Unlike the physical properties, the addition of BS in the composite results in increasing the setting time and decreasing the workability and compressive and flexural strength compared with the control mortar.
- Alkali-treated particles exhibited superior compatibility compared with other pretreatment methods. The SEM results showed a better microstructural interface between the alkali-treated BS and cement matrix. The mechanical behavior of the alkali-treated BSC was higher than that for the other two treatments. Hence, alkaline treatment is recommended in future work.
- The BS content in the matrix affects the physical, rheological, and mechanical behavior of the composite. The replacement of BS with cement in the mortar makes the composite lighter and more porous. However, a greater particle content addition increases the setting time, reduces the slump, and the composite compressive and flexural strength decrease. All BSC composite mortars satisfied the strength requirements for masonry mortar. BSC3 and BSC5 can be classified as load-bearing lightweight concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Piazza, M.; Lobovikov, M.; Paudel, S.; Ren, H.; Wu, J. World bamboo Resources—A Thematic study Prepared in the Framework of the Global Forest Resources Assessment 2005; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Yadav, M.; Mathur, A. Bamboo as a sustainable material in the construction industry: An overview. Mater. Today Proc. 2021, 43, 2872–2876. [Google Scholar] [CrossRef]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of the hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Dhakal, U.; Berardi, U.; Gorgolewski, M.; Richman, R. Hygrothermal performance of hempcrete for Ontario (Canada) buildings. J. Clean. Prod. 2017, 142, 3655–3664. [Google Scholar] [CrossRef]
- Arnaud, L. Mechanical and thermal properties of hemp mortars and wools: Experimental and theoretical approaches. In Proceedings of the 3rd International Symposium on Bioresource hemp, Wolfburg, Germany, 13–16 September 2000. [Google Scholar]
- Li, M.; Khelifa, M.; El Ganaoui, M. Mechanical characterization of concrete containing wood shavings as aggregates. Int. J. Sustain. Built Environ. 2017, 6, 587–596. [Google Scholar] [CrossRef]
- Savastano, H.; Warden, P.G.; Coutts, R.S.P. Brazilian waste fibres as reinforcement for cement-based composites. Cem. Concr. Compos. 2000, 22, 379–384. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Sundararajan, T. Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cem. Concr. Compos. 2005, 27, 575–582. [Google Scholar] [CrossRef]
- Galicia-Aldama, E.; Mayorga, M.; Arteaga-Arcos, J.C.; Romero-Salazar, L. Rheological behaviour of cement paste added with natural fibres. Constr. Build. Mater. 2019, 198, 148–157. [Google Scholar] [CrossRef]
- Thomas, B.S.; Kumar, S.; Arel, H.S. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material—A review. Renew. Sustain. Energy Rev. 2017, 80, 550–561. [Google Scholar] [CrossRef]
- Rodier, L.; Bilba, K.; Onésippe, C.; Arsène, M.-A. Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Ind. Crop. Prod. 2019, 141, 111731. [Google Scholar] [CrossRef]
- Vaickelionis, G.; Vaickelioniene, R. Cement hydration in the presence of wood extractive and pozzolan mineral additives. Ceram. Silik. 2006, 50, 115. [Google Scholar]
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials 2018, 11, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frías, M.; Savastano, H.; Villar, E.; Sánchez de Rojas, M.I.; Santos, S. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 2012, 34, 1019–1023. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Z.; Yan, Y. Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Constr. Build. Mater. 2019, 220, 403–414. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Ahuja, B.M.; Krishnamoorthy, S. Behaviour of concrete reinforced with jute, coir and bamboo fibres. Int. J. Cem. Compos. Lightweight Concr. 1983, 5, 3–13. [Google Scholar] [CrossRef]
- Coutts, R.S.P. A review of Australian research into natural fibre cement composites. Cem. Concr. Compos. 2005, 27, 518–526. [Google Scholar] [CrossRef]
- Fan, M.; Ndikontar, M.K.; Zhou, X.; Ngamveng, J.N. Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Constr. Build. Mater. 2012, 36, 135–140. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Akinyemi, A.B.; Omoniyi, E.T.; Onuzulike, G. Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Constr. Build. Mater. 2020, 245, 118405. [Google Scholar] [CrossRef]
- Das, M.; Chakraborty, D. Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J. Appl. Polym. Sci. 2008, 107, 522–527. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Guo, X. Effects of alkali-treated bamboo fibers on the morphology and mechanical properties of oil well cement. Constr. Build. Mater. 2017, 150, 619–625. [Google Scholar] [CrossRef]
- Agarwal, A.; Nanda, B.; Maity, D. Experimental investigation on chemically treated bamboo reinforced concrete beams and columns. Constr. Build. Mater. 2014, 71, 610–617. [Google Scholar] [CrossRef]
- Ahmed, W.; Khushnood, R.A.; Memon, S.A.; Ahmad, S.; Baloch, W.L.; Usman, M. Effective use of sawdust for the production of eco-friendly and thermal-energy efficient normal weight and lightweight concretes with tailored fracture properties. J. Clean. Prod. 2018, 184, 1016–1027. [Google Scholar] [CrossRef]
- Sales, A.; de Souza, F.R.; dos Santos, W.N.; Zimer, A.M.; do Couto Rosa Almeida, F. Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application. Constr. Build. Mater. 2010, 24, 2446–2453. [Google Scholar] [CrossRef]
- NF EN 196-1. Méthodes D’essais des Ciments; Association Francaise de Normalisation: Paris, France, 1990. [Google Scholar]
- Monreal, P.; Mboumba-Mamboundou, L.B.; Dheilly, R.M.; Quéneudec, M. Effects of aggregate coating on the hygral properties of lignocellulosic composites. Cem. Concr. Compos. 2011, 33, 301–308. [Google Scholar] [CrossRef]
- NF P15-431. Liant Hydraulique-Technique des Essais-Détermination du Temps de Prise sur Mortier Normal; AFNOR Editions: Saint-Denis, France, 1994. [Google Scholar]
- Schwartzentruber, A.; Catherine, C. La méthode du mortier de béton équivalent (MBE)—Un nouvel outil d’aide à la formulation des bétons adjuvantés. Mat. Struct. 2000, 33, 475–482. [Google Scholar] [CrossRef]
- Laboratoire Central des Ponts et Chaussée. Maîtrise de la Durabilité des Ouvrages D’art en Béton: Application de L’approche Performantielle; Techniques et Méthodes; LCPC: Paris, France, 2010. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K. Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci. 2001, 80, 1013–1020. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Braga Costa Santos, E.; Moreno, C.; Barros, J.; Moura, D.; Fim, F.; Ries, A.; Wellen, R.; Silva, L. Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers. Mater. Res. 2018, 21. [Google Scholar] [CrossRef]
- Hamidon, M.H.; Sultan, M.T.H.; Ariffin, A.H.; Shah, A.U.M. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. J. Mater. Res. Technol. 2019, 8, 3327–3337. [Google Scholar] [CrossRef]
- Vo, L.T.T.; Navard, P. Treatments of plant biomass for cementitious building materials—A review. Constr. Build. Mater. 2016, 121, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Jo, B.W.; Chakraborty, S.; Kim, H. Efficacy of alkali-treated jute as fibre reinforcement in enhancing the mechanical properties of cement mortar. Mater. Struct. 2016, 49, 1093–1104. [Google Scholar] [CrossRef]
- Zhang, H. Cement. In Building Materials in Civil Engineering; Zhang, H., Ed.; Woodhead Publishing Series in Civil and Structural Engineering: Southston, UK, 2011; pp. 46–423. ISBN 978-1-84569-955-0. [Google Scholar]
- Xie, X.; Zhou, Z.; Jiang, M.; Xu, X.; Wang, Z.; Hui, D. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. Part B Eng. 2015, 78, 153–161. [Google Scholar] [CrossRef]
- Ren, Q.; Zeng, Z.; Jiang, Z.; Chen, Q. Incorporation of bamboo charcoal for cement-based humidity adsorption material. Constr. Build. Mater. 2019, 215, 244–251. [Google Scholar] [CrossRef]
- JGJT 98-2010. Specification for Mix Proportion Design of Mansonary Mortar; Ministry of Housing and Urban-Rural Development of the People: Beijing, China, 2011.
- RILEM. Recommandations: Functional Classification of Lightweight Concretes; RILEM Publications SARL: Bagneux, France, 1978. [Google Scholar]
Particle density (kg/m3) | 1563 |
Bulk density (kg/m3) | 390 |
Initial moisture content | 6.089% |
Water absorption capacity (1 min) | 277.5% |
Water absorption capacity (1 h) | 320% |
Designation | Cement [kg/m3] | Fine Aggregate [kg/m3] | Bamboo Sawdust [kg/m3] | Pre-Wetting Water [l/m3] | Water [l/m3] |
---|---|---|---|---|---|
Control | 511.018 | 1533.055 | 0.000 | 0.000 | 255.509 |
BSC 1 | 509. 336 | 1528.009 | 5.145 | 16.463 | 254.668 |
BSC 3 | 505. 903 | 1517. 709 | 15.646 | 50.069 | 252.951 |
BSC 5 | 502. 374 | 1507. 121 | 26.441 | 84.610 | 251.187 |
BSC 7 | 498. 745 | 1496. 235 | 37.540 | 120.128 | 249.372 |
Operation | Introduction of Pre-Wetting Water and BS | Addition of Cement and Sand | Addition of Water | Scrape the Bowl | Mixture | |
---|---|---|---|---|---|---|
Duration | 3 min | 2 min | 1 min 30 s | 30 s | 1 min | |
State of mixer | Stop | Slow speed | Stop | High speed |
Control | Aqueous Treatment | Hot Aqueous Treatment | Alkali Treatment | |
---|---|---|---|---|
Initial setting time (min) | 110 | 230 (+109%) * | 190 (+73%) * | 160 (+45%) * |
Final setting time (min) | 140 | 310 (+121%) * | 270 (+93%) * | 200 (+43%) * |
Control | BSC1 | BSC3 | BSC5 | BSC7 | |
---|---|---|---|---|---|
Initial setting time (min) | 110 | 140 (+27%) * | 160 (+45%) * | 160 (+45%) * | 170 (+55%) * |
Final setting time (min) | 140 | 170 (+21%) * | 200 (+43%) * | 220 (+57%) * | 230 (+64%) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Seibou, A.-O.; Li, M.; Kaci, A.; Ye, J. Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials. Crystals 2021, 11, 1593. https://doi.org/10.3390/cryst11121593
Tong Y, Seibou A-O, Li M, Kaci A, Ye J. Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials. Crystals. 2021; 11(12):1593. https://doi.org/10.3390/cryst11121593
Chicago/Turabian StyleTong, Yunyun, Abdel-Okash Seibou, Mengya Li, Abdelhak Kaci, and Jinjian Ye. 2021. "Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials" Crystals 11, no. 12: 1593. https://doi.org/10.3390/cryst11121593
APA StyleTong, Y., Seibou, A. -O., Li, M., Kaci, A., & Ye, J. (2021). Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials. Crystals, 11(12), 1593. https://doi.org/10.3390/cryst11121593