Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Coleus amboinicus Extract
2.2.2. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles
2.2.3. Characterization Techniques
2.2.4. Catalytic Reduction of 4-Nitrophenol by Pd-RGO
2.2.5. Antimicrobial Activity of Palladium-Reduced Graphite Oxide Nanoparticle
3. Result and Discussion
3.1. UV-Visible Spectroscopy
3.2. Structural Analysis of RGO-PN by XRD
3.3. SEM and TEM Analysis
3.4. XPS Analysis
3.5. Catalytic Reduction of 4-Nitrophenol by Pd-RGO100 Nanoparticles
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Kalsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Suchismita, G.; Wenzhong, B.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Yan, Q.; Ji, J.; Qiu, B.; Zhang, J.; Xing, M. Graphene-Based Photo-Fenton Catalysts for Pollutant Control. Trans. Tianjin Univ. 2021, 1–17. [Google Scholar] [CrossRef]
- Tran, T.P.N.; Nguyen, T.N.; Taniike, T.; Nishimura, S. Tailoring Graphene Oxide Framework with N-and S-Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems. Catal. Lett. 2020, 151, 247–254. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, S.; Xu, W.; Lv, A.; Wang, Z.; Wang, H.; Liu, G.; Zhang, Y. Fabrication of Composite Material with Pd Nanoparticles and Graphene on Nickel Foam for Its Excellent Electrocatalytic Performance. Electrocatalysis 2020, 11, 522–535. [Google Scholar]
- Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778. [Google Scholar] [CrossRef]
- Kole, A.K.; Biswas, S.; Tiwary, C.S.; Kumbhakar, P. A facile synthesis of graphene oxide–ZnS/ZnO nanocomposites and observations of thermal quenching of visible photoluminescence emission and nonlinear optical properties. J. Lumin. 2016, 179, 211–221. [Google Scholar] [CrossRef]
- Jayakumar, A.; Vedhaiyan, R.K. Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: Its antibacterial and antioxidant activities. Korean J. Chem. Eng. 2019, 36, 1869–1881. [Google Scholar] [CrossRef]
- Mori, K.; Kumami, A.; Tomonari, M.; Yamashita, H. A pH-Induced Size Controlled Deposition of Colloidal Ag Nanoparticles on Alumina Support for Catalytic Application. J. Phys. Chem. C 2009, 113, 16850–16854. [Google Scholar]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Zou, P.; Zhang, P.; Zhang, M.; Mu, J.; Guo, Z.; Li, X.; Wang, C.; Liu, Y. In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chem. Commun. 2011, 47, 3906–3908. [Google Scholar] [CrossRef]
- Jin, Z.; Xiao, M.; Bao, Z.; Wang, P.; Wang, J. A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 6406–6410. [Google Scholar] [CrossRef] [PubMed]
- Shargh, A.Y.; Sayadi, M.H.; Heidari, A. Green Biosynthesis of Palladium Oxide Nanoparticles Using Dictyota indica Seaweed and its application for adsorption. J. Water Environ. Nanotechnol. 2018, 3, 337–347. [Google Scholar]
- Mahdavi, H.; Rezaei, M.; Ahmadian-Alam, L.; Amini, M.M. A novel ternary Pd-GO/N-doped TiO2 hierarchical visible-light sensitive photocatalyst for nanocomposite membrane. Korean J. Chem. Eng. 2020, 37, 946–954. [Google Scholar] [CrossRef]
- Bhuyan, D.; Saikia, M.; Saikia, L. Magnetically recoverable Fe3O4@SBA-15: An improved catalyst for three component coupling reaction of aldehyde, amine and alkyne. Catal. Commun. 2014, 58, 158–163. [Google Scholar] [CrossRef]
- Feng, X.; Yan, M.; Zhang, T.; Liu, Y.; Bao, M. Preparation and application of SBA-15-supported palladium catalyst for Suzuki reaction in supercritical carbon dioxide. Green Chem. 2010, 12, 1758–1766. [Google Scholar] [CrossRef]
- Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 2016, 21, 369. [Google Scholar] [CrossRef]
- Ju, K.S.; Parales, R.E. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol. Mol. Biol. Rev. 2010, 74, 250–272. [Google Scholar] [CrossRef] [Green Version]
- Tomei, M.C.; Annesini, M.C.; Rita, S.; Daugulis, A.J. Two-Phase Partitioning Bioreactors Operating with Polymers Applied to the Removal of Substituted Phenols. Environ. Sci. Technol. 2010, 44, 7254–7259. [Google Scholar]
- Yi, S.; Zhuang, W.Q.; Wu, B.; Tay, S.T.L.; Tay, J.H. Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor. Environ. Sci. Technol. 2006, 40, 2396–2401. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef] [PubMed]
- Podeh, M.R.H.; Bhattacharya, S.K.; Qu, M. Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res. 1995, 29, 391–399. [Google Scholar] [CrossRef]
- Sarkar, S.; Sinha, A.K.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, T. Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material. J. Phys. Chem. C 2011, 115, 1659–1673. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Zhou, J.C.; Soto, C.M.; Chen, M.S.; Bruckman, M.A.; Moore, M.H.; Barry, E.; Ratna, B.R.; Pehrsson, P.E.; Spies, B.R.; Confer, T.S. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J. Nanobiotechnol. 2012, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, Y.C.G.; Ng, G.M.; Huan, C.H.A. Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 2015, 590, 40–48. [Google Scholar] [CrossRef]
- Jiang, F.; Li, R.; Cai, J.; Xu, W.; Cao, A.; Chen, D.; Zhang, X.; Wang, C.; Shu, C. Ultrasmall Pd/Au bimetallic nanocrystal embedded in hydrogen-bonded supramolecular structures: Facile synthesis and catalytic activities in the reduction of 4-niteophenol. J. Mater. Chem. A 2015, 3, 19433–19438. [Google Scholar] [CrossRef]
- Xu, R.; Bi, H.; He, G.; Zhu, J.; Chen, H. Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol. Mater. Res. Bull. 2014, 57, 190–196. [Google Scholar] [CrossRef]
- Kim, Y.; Ma, R.; Reddy, D.A.; Kim, T.K. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl. Surf. Sci. 2015, 357, 2112–2120. [Google Scholar] [CrossRef]
- Zhang, P.; Li, R.; Huang, Y.; Chen, Q. A novel approach for the in situ synthesis of Pt-Pd nanoalloys supported on Fe3O4@C core-shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl. Mater. Interfaces 2014, 6, 2671–2678. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallikarjuna, K.; Reddy, L.V.; Al-Rasheed, S.; Mohammed, A.; Gedi, S.; Kim, W.K. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals 2021, 11, 134. https://doi.org/10.3390/cryst11020134
Mallikarjuna K, Reddy LV, Al-Rasheed S, Mohammed A, Gedi S, Kim WK. Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals. 2021; 11(2):134. https://doi.org/10.3390/cryst11020134
Chicago/Turabian StyleMallikarjuna, Koduru, Lebaka Veeranjaneya Reddy, Sarah Al-Rasheed, Arifullah Mohammed, Sreedevi Gedi, and Woo Kyoung Kim. 2021. "Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity" Crystals 11, no. 2: 134. https://doi.org/10.3390/cryst11020134
APA StyleMallikarjuna, K., Reddy, L. V., Al-Rasheed, S., Mohammed, A., Gedi, S., & Kim, W. K. (2021). Green Synthesis of Reduced Graphene Oxide-Supported Palladium Nanoparticles by Coleus amboinicus and Its Enhanced Catalytic Efficiency and Antibacterial Activity. Crystals, 11(2), 134. https://doi.org/10.3390/cryst11020134