2.0 μm Ultra Broadband Emission from Tm3+/Ho3+ Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Absorption Spectra
3.2. Fluorescence Spectra and Energy Transfer Mechanism
3.3. Gain Properties and Energy Transfer Coefficients between Tm3+ and Ho3+ Ions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 2012, 6, 423–431. [Google Scholar] [CrossRef]
- Tsang, Y.H.; King, T.A.; Ko, D.K.; Lee, J.M. Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm. J. Mod. Opt. 2006, 53, 991–1001. [Google Scholar] [CrossRef]
- Wang, W.C.; Zhou, B.; Xu, S.H.; Yang, Z.M.; Zhang, Q.Y. Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 2019, 101, 90–171. [Google Scholar] [CrossRef]
- Kochanowicz, M.; Zmojda, J.; Miluski, P.; Baranowska, A.; Leich, M.; Schwuchow, A.; Jaeger, M.; Kuwik, M.; Pisarska, J.; Pisarski, W.A.; et al. Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 μm. Opt. Mater. Express 2019, 9, 1450–1458. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, B.; Liu, J.; Song, Y.F.; Zhang, H. Recent developments in mid-infrared fiber lasers: Status and challenges. Opt. Laser Technol. 2020, 132, 106497. [Google Scholar] [CrossRef]
- Yin, T.C.; Mao, B.M.; Wei, Y.Z.; Chen, D.R. Widely wavelength-tunable 2 μm Brillouin fiber laser incorporating a highly germania-doped fiber. Appl. Opt. 2018, 57, 6831–6834. [Google Scholar] [CrossRef]
- Wang, W.C.; Zhang, W.J.; Li, L.X.; Liu, Y.; Zhang, Q.Y. Spectroscopic and structural characterization of barium tellurite glass fibers for mid-infrared ultra-broad tunable fiber lasers. Opt. Mater. Express 2016, 6, 2095–2107. [Google Scholar] [CrossRef]
- Richards, B.; Jha, A.; Tsang, Y.; Binks, D.; Lousteau, J.; Fusari, F.; Lagatsky, A.; Brown, C.; Sibbett, W. Tellurite glass lasers operating close to 2 μm. Laser Phys. Lett. 2010, 7, 177–193. [Google Scholar] [CrossRef]
- Kim, J.W.; Mackenzie, J.I.; Parisi, D.; Veronesi, S.; Tonelli, M.; Clarkson, W.A. Efficient in-band pumped Ho: LuLiF4 2 μm laser. Opt. Lett. 2010, 35, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, M.; Jackson, S.D. High-pulse-energy, actively Q-switched Tm3+, Ho3+-codoped silica 2 μm fiber laser. Opt. Lett. 2008, 33, 1044–1046. [Google Scholar] [CrossRef]
- Gao, G.J.; Hu, L.L.; Fan, H.Y.; Wang, G.N.; Li, K.F.; Feng, S.Y.; Fan, S.J.; Chen, H.Y.; Pan, J.J.; Zhang, J.J. Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses. Opt. Mater. 2009, 32, 402–405. [Google Scholar] [CrossRef]
- Li, K.F.; Zhang, G.; Wang, X.; Hu, L.L.; Kuan, P.W.; Chen, D.P.; Wang, M. Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser. Opt. Express 2012, 20, 10115–10121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, G.H.; Zhang, B.; Yin, K.; Yang, W.Q.; Hou, J. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm. Opt. Express 2014, 22, 25976–25983. [Google Scholar] [CrossRef]
- Richards, B.; Shen, S.X.; Jha, A.; Tsang, Y.; Binks, D. Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre. Opt. Express 2007, 15, 6546–6551. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Shen, S.; Naftaly, M. Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses. Phys. Rev. B 2000, 62, 6215–6227. [Google Scholar] [CrossRef]
- Li, L.X.; Wang, W.C.; Zhang, C.F.; Liu, J.L.; Zhang, Q.Y.; Jiang, Z.H. Exploration of the new tellurite glass system for efficient 2 μm luminescence. J. Non Cryst. Solids 2019, 508, 15–20. [Google Scholar] [CrossRef]
- Mao, L.Y.; Liu, J.L.; Li, L.X.; Wang, W.C. TeO2-Ga2O3-ZnO ternary tellurite glass doped with Tm3+ and Ho3+ for 2 μm fiber lasers. J. Non Cryst. Solids 2020, 531, 119855. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, W.C.; Ye, Y.C.; Deng, T.T.; Ou, D.Q.; Cheng, J.Y.; Yuan, S.J.; Xiao, P. Effect of BaF2 variation on spectroscopic properties of Tm3+ doped gallium tellurite glasses for efficient 2.0 μm laser. Front. Chem. 2021, 8, 628273. [Google Scholar] [CrossRef]
- Zhou, M.H.; Zhou, Y.X.; Su, X.E.; Zhu, Y.R.; Zhou, Z.Z.; Cheng, P. Around 2 μm fluorescence and energy transfer in Tm3+/Ho3+ co-doped tellurite glass. J. Non Cryst. Solids 2018, 481, 344–351. [Google Scholar] [CrossRef]
- Gao, X.Y.; Tian, Y.; Liu, Q.H.; Li, B.P.; Tang, W.H.; Zhang, J.J.; Xu, S.Q. Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions. Opt. Laser Technol. 2019, 111, 115–120. [Google Scholar] [CrossRef]
- Balda, R.; Lacha, L.M.; Fernandez, J.; Fernandez-Navarro, J.M. Optical spectroscopy of Tm3+ ions in GeO2-PbO-Nb2O5 glasses. Opt. Mater. 2005, 27, 1771–1775. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.Y.; Li, C.M.; Yang, H.X.; Pun, E.Y.B.; Tanable, S. Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser. J. Lumin. 2008, 128, 74–80. [Google Scholar] [CrossRef]
- Gebavi, H.; Taccheo, S.; Milanese, D. The enhanced two micron emission in thulium doped tellurite glasses. Opt. Mater. 2013, 35, 1792–1796. [Google Scholar] [CrossRef]
- Cao, R.J.; Lu, Y.; Tian, Y.; Huang, F.F.; Xu, S.Q.; Zhang, J.J. Spectroscopy of thulium and holmium co-doped silicate glasses. Opt. Mater. Express 2016, 6, 2252–2263. [Google Scholar] [CrossRef]
- Kochanowicz, M.; Zmojda, J.; Miluski, P.; Baranowska, A.; Ragin, T.; Dorosz, J.; Kuwik, M.; Pisarski, W.A.; Pisarska, J.; Lesniak, M.; et al. 2 μm emission in gallo-germanate glasses and glass fibers co-doped with Yb3+/Ho3+ and Yb3+/Tm3+/Ho3+. J. Lumin. 2019, 211, 341–346. [Google Scholar] [CrossRef]
- Wang, C.Z.; Tian, Y.; Gao, X.Y.; Liu, Q.H.; Huang, F.F.; Li, B.P.; Zhang, J.J.; Xu, S.Q. Mid-infrared fluorescence properties, structure and energy transfer around 2 μm in Tm3+/Ho3+ co-doped tellurite glass. J. Lumin. 2018, 194, 791–796. [Google Scholar] [CrossRef]
- McCumber, D.E. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 1964, 136, A954–A957. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, W.C.; Zhang, Q.Y. BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 μm fiber lasers. J. Non Cryst. Solids 2018, 482, 147–153. [Google Scholar] [CrossRef]
- Wang, N.; Cao, R.J.; Cai, M.Z.; Lu, Y.; Shen, L.L.; Tian, Y.; Huang, F.F.; Xu, S.Q.; Zhang, J.J. An efficient 2.0 μm emission of Er3+/Ho3+ co-doped lead silicate glass. Infrared Phys. Technol. 2017, 83, 1–6. [Google Scholar] [CrossRef]
- Chen, R.; Tian, Y.; Li, B.P.; Jing, X.F.; Zhang, J.J.; Xu, S.Q.; Eckert, H.; Zhang, X.H. Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass. Photon. Res. 2016, 4, 214–221. [Google Scholar] [CrossRef]
- Zou, X.L.; Toratani, H. Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses. J. Non. Cryst. Solids 1996, 195, 113–124. [Google Scholar] [CrossRef]
- Zhu, T.T.; Tang, G.W.; Chen, X.D.; Sun, M.; Qian, Q.; Chen, D.D.; Yang, Z.M. Two micrometer fluorescence emission and energy transfer in Yb3+/Ho3+ co-doped lead silicate glass. Int. J. Appl. Glass Sci. 2017, 8, 196–203. [Google Scholar] [CrossRef]
- Shen, L.L.; Cai, M.Z.; Lu, Y.; Wang, N.; Huang, F.F.; Xu, S.Q.; Zhang, J.J. Preparation and investigation of Tm3+/Ho3+ co-doped germanate-tellurite glass as promising materials for ultrashort pulse laser. Opt. Mater. 2017, 67, 125–131. [Google Scholar] [CrossRef]
- Miyakawa, T.; Dexter, D.L. Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids. Phys. Rev. B 1970, 1, 2961–2969. [Google Scholar] [CrossRef]
- Tarelho, L.V.G.; Gomes, L.; Ranieri, I.M. Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals. Phys. Rev. B 1997, 56, 14344–14351. [Google Scholar] [CrossRef]
Energy Transfer | N( Number of Phonons) (% Phonon Assisted) | Energy Transfer Coefficient (cm6/s) | |
---|---|---|---|
Tm3+ → Tm3+(migration) (3F4 + 3H6 → 3H6 + 3F4) | 0 | 1 | 8.98 × 10−39 |
99.86 | 0.16 | ||
Tm3+ → Ho3+ (direct transfer) (3F4 → 5I7) | 0 | 1 | 6.22 × 10−39 |
94.95 | 5.05 | ||
Ho3+ → Tm3+ (back transfer) (5I7 → 3F4) | 0 | 1 | 3.16 × 10−40 |
99.32 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Wang, W.; Ye, Y.; Deng, T.; Huang, Y.; Gu, S.; Chen, Y.; Xiao, P. 2.0 μm Ultra Broadband Emission from Tm3+/Ho3+ Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers. Crystals 2021, 11, 190. https://doi.org/10.3390/cryst11020190
Yuan J, Wang W, Ye Y, Deng T, Huang Y, Gu S, Chen Y, Xiao P. 2.0 μm Ultra Broadband Emission from Tm3+/Ho3+ Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers. Crystals. 2021; 11(2):190. https://doi.org/10.3390/cryst11020190
Chicago/Turabian StyleYuan, Jian, Weichao Wang, Yichen Ye, Tingting Deng, Yizhao Huang, Shitao Gu, Yuanbin Chen, and Peng Xiao. 2021. "2.0 μm Ultra Broadband Emission from Tm3+/Ho3+ Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers" Crystals 11, no. 2: 190. https://doi.org/10.3390/cryst11020190
APA StyleYuan, J., Wang, W., Ye, Y., Deng, T., Huang, Y., Gu, S., Chen, Y., & Xiao, P. (2021). 2.0 μm Ultra Broadband Emission from Tm3+/Ho3+ Co-Doped Gallium Tellurite Glasses for Broadband Light Sources and Tunable Fiber Lasers. Crystals, 11(2), 190. https://doi.org/10.3390/cryst11020190